K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2016

Chứng minh bằng phương pháp phản chứng: 
Giả sử 2 số lẻ liên tiếp không nguyên tố cùng nhau.Nghĩa là chúng cùng chia hết cho 1 số.Gọi 2 số lẻ là 2n+1 và 2n+3 cùng chia hết cho 1 số a.Ta có: 3 chia hết cho 3 nên 2n+3 chia hết cho 3 thì 2n chia hết cho 3.Nhận thấy 2n chia hết cho 3 mà 1 không chia hết cho 3 suy ra 2n+1 không chia hết cho 3.Điều này trái với giả sử là 2n+1 chia hết cho 3.Do đó điều giả sử lá sai .Hay : 2 số lẻ liên tiếp nguyên tố cùng nhau

21 tháng 11 2016

  gọi 2 số lẻ đó là 2k+1 và 2k+3 
gọi ước chung lớn nhất của 2 số lẻ đó là p 
=>2k+1 chia hết cho p; 2k+3 chia hết cho p 
=>2k+3-2k-1=2 chia hết cho p 
=>p=1;2 
trường hợp p=2 loại vì 2k+1 và 2k+3 lẻ

12 tháng 7 2015

đó là đương nhiên vì 2 số tự nhiên liên tiếp có ƯCLN=1
 

12 tháng 7 2015

Gọi số thứ  nhất là n, số thứ hai là n+1, ƯC(n,n+1)=a

Ta có: n chia hết cho a(1)

       n+1 chia hết cho a(2)

Từ (1) và (2) ta được:

n+1-n chia hết cho a

=> 1 chia hết cho a

=> a=1

=> ƯC(n,n+1)=1

=> n và n+1 là hai số nguyên tố cùng nhau.

Vậy 2 số tự nhiên liên tiếp là hai số nguyên tố cùng nhau 

17 tháng 4 2017

a, Gọi d ∈ ƯC(n,n+1) => (n+1) – 1 ⋮ d => 1d => d = 1. Vậy n, n+1 là hai số nguyên tố cùng nhau

b, Gọi d ∈ ƯC(2n+1,2n+3) => (2n+3) – (2n+1) ⋮ d => 2d => d ∈ {1;2}. Vì d là số lẻ => d = 1 => dpcm

c, Gọi d ∈ ƯC(2n+1,3n+1) => 3.(2n+1) – 2.(3n+1) ⋮ d => 1d => d = 1 => dpcm

25 tháng 12 2021

Thank you

 

2 tháng 6 2017

31 tháng 10

Đặt (3n+1,2n+1)=₫

=>(2(3n+1(,3(2n+1)=₫

=>(6n+2,6n+3)=₫=>6n+2...₫,6n+3...₫

=>6n+3-6n+2...₫=>1...₫=>₫=1

=>(3n+1,2n+1)=1 nên 3n+1,2n+1laf 2 snt cùng nhau

 

26 tháng 3 2019

Gọi số thứ  nhất là n, số thứ hai là n+1, ƯC(n,n+1)=a

Ta có: n chia hết cho a(1); n+1 chia hết cho a(2)

Từ (1) và (2) ta được:

n+1-n chia hết cho a

=> 1 chia hết cho a

=> a=1

=> ƯC(n,n+1)=1

=> n và n+1 là hai số nguyên tố cùng nhau.

Vậy 2 số tự nhiên liên tiếp là hai số nguyên tố cùng nhau

8 tháng 11 2015

1)Gọi 2 số tự nhiên liên tiếp là n và n+1

Đặt ƯCLN(n,n+1)=d

Ta có: n chia hết cho d

n+1 chia hết cho d

=>n+1-n chia hết cho d

=>1 chia hết cho d

=>d=1

=>ƯCLN(n,n+1) =1

=>n và n+1 là 2 số nguyên tố cùng nhau

2)Gọi ƯCLN(2n+5,3n+7)=d

Ta có: 2n+5 chia hết cho d=>3.(2n+5) chia hết cho d=>6n+15 chia hết cho d

3n+7 chia hết cho d=>2.(3n+7) chia hết cho d=>6n+14 chia hết cho d

=>6n+15-(6n+14) chia hết cho d

=>1 chia hết cho d

=>d=1

=>ƯCLN(2n+5,3n+7)=1

=>2n+5 và 3n+7 là 2 số nguyên tố cùng nhau

8 tháng 11 2015

a) 

Gọi 2 số tự nhiên liên tiếp là n; n+1 

Gọi ƯCLN ( n;n+1) la d 

=> n chia hết cho d; n+1 chia hết cho d      

=> n+1-n chia hết cho d  

=> 1 chia hết cho d 

=> d =1

=>  ƯCLN ( n;n+1) =1

=>  hai số tự nhiên liên tiếp luôn là hai số nguyên tố cùng nhau

b) 

Gọi ƯCLN( 2n+5;3n+7) la  d 

=> 2n+5 chia hết cho d ; 3n+7 chia hết cho d 

=> 3.(2n+5) chia hết cho d ; 2.(3n+7) chia hết cho d 

=> 6n+15 chia hết cho d ; 6n+14 chia hết cho d 

=> 6n+15-(6n+14) chia hết cho d 

=> 1 chia hết cho d 

=> d= 1

=>  ƯCLN( 2n+5;3n+7)=1

=>2n+5 và 3n+7 là hai số nguyên tố cùng nhau

13 tháng 7 2015

Gọi 2 số đó là n và n+1

Gọi ƯCLN(n; n+1) là d

=> n chia hết cho d

n+1 chia hết cho d

=> n+1-n chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> ƯCLN(n; n+1) = 1

=> n và n+1 nguyên tố cùng nhau (đpcm)

13 tháng 7 2015

Gọi 2 số đó là n và n+1

Gọi ƯCLN(n; n+1) là d

=> n chia hết cho d

n+1 chia hết cho d

=> n+1-n chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> ƯCLN(n; n+1) = 1

=> n và n+1 nguyên tố cùng nhau (đpcm)

26 tháng 11 2020

chứng minh rằng 

a) hai số lẻ liên tiếp 

b) 2N+5 VÀ 3n+7

23 tháng 7 2016

a)Gọi 2 số tự nhiên liên tiếp là a;a+1

=>a+1-a  chia hết cho WCLN của a;a+1

=1 mà ước của 1 là 1 nên ước chung lớn nhất của a;a+1 là 1.

Vậy 2 số tự nhiên liên tiếp là 2 số nguyên tố cùng nhau.

b)Gọi 2 số lẻ liên tiếp là a;a+2.

Làm như trên:

Hiệu:a+2-a=2

Vậy ước chung lớn nhất của a;a+2 là 1 hoặc 2.

Mà số lẻ ko chia hết cho 2 nên ước chung lớn nhất của a;a+2 là 1.

Vậy 2 số lẻ liên tiếp là 2 số nguyên tố cùng nhau.

c)Gọi WCLN(2n+1;3n+1)=d.

2n+1 chia hết cho d=>6n+3 chia hết cho d.

3n+1 ------------------=>6n+2 chia hết cho d.

Hiệu chia hết cho d,hiệu =1=>...

Vậy là số nguyên tố cùng nhau.

Chúc em học tốt^^