Tìm x và y:
6.x2 + 35.y2 = 2014
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Phương trình hoành độ giao điểm là:
\(x^2-kx+k-2=0\)
\(\text{Δ}=\left(-k\right)^2-4\left(k-2\right)\)
\(=k^2-4k+8=\left(k-2\right)^2+4>0\)
Do đó: (P) luôn cắt (d) tại hai điểm phân biệt
2: Theo đề, ta có; \(x_1^2+x_2^2+x_1^2+x_2^2=14\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=7\)
\(\Leftrightarrow k^2-2\left(k-2\right)=7\)
\(\Leftrightarrow k^2-2k-3=0\)
=>(k-3)(k+1)=0
=>k=3 hoặc k=-1
a)Theo tính chất đại lượng tỉ lệ thuận ta có:
\(\frac{y1}{x1}=\frac{y2}{x2}\)\(\Rightarrow\)\(\frac{-3}{x1}\)=\(\frac{-2}{5}\)\(\Rightarrow\)x1=\(\frac{-3.5}{-2}\)=\(\frac{15}{2}\)
b)tương tự ta giải được x2=\(\frac{20}{3}\)
làm câu b cho mk luôn thử xem
câu a mk làm gióng bạn ồi