K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
22 tháng 6 2022

Lời giải:

a. Xét tam giác $ABH$ và $ACH$ có:
$AB=AC$ (do tam giác $ABC$ cân tại $A$)

$\widehat{AHB}=\widehat{AHC}=90^0$

$AH$ chung

$\Rightarrow \triangle ABH=\triangle ACH$ (ch-cgv)

$\Rightarrow BH=CH$

b. $BH=CH=\frac{BC}{2}=3$ (cm)

Áp dụng định lý Pitago:
$AH=\sqrt{AB^2-BH^2}=\sqrt{5^2-3^2}=4$ (cm)

c.

Vì $BH=CH$ nên $H$ là trung điểm $BC$

Do đó $AH$ là đường trung tuyến của tam giác $ABC$

$\Rightarrow A,G,H$ thẳng hàng

d.

Từ tam giác bằng nhau phần a suy ra $\widehat{A_1}=\widehat{A_2}

Xét tam giác $ABG$ và $ACG$ có:

$AB=AC$ 

$AG$ chung

$\widehat{A_1}=\widehat{A_2}$ (cmt)

$\Rightarrow \triangle ABG=\triangle ACG$ (c.g.c)

$\Rightarrow \widehat{ABG}=\widehat{ACG}$ (đpcm)

$

AH
Akai Haruma
Giáo viên
22 tháng 6 2022

Hình vẽ:

23 tháng 4 2016

a. xét tg ABH và tg ACH vuông tại H có 

AB=AC (tg ABC cân tại A)

góc B = góc C (tg ABC cân tại A)

suy ra tg ABH = tg ACH (cạnh huyền-góc nhọn)

=> BH=HC (2 cạnh tương ứng)

b. ta có BC= BH + HC

mà BH=BC => BC/2=6/2=BH=HC=3(cm)

áp dụng định lí Pytago ta có

AB2= AH2 + BH2

=> AH2= AB- BH2 =52 - 32= 25 - 9 = 16

=> AH= căn 16 = 4(cm)

c. AH là 1 đường phân giác vì BH=HC 

vì AH là 1 đoạn thẳng mà G thuộc AH (trọng tâm của tg là điểm mà 3 đường phân giác cắt nhau)

nên A,H,G thẳng hàng

d. xét tg GBH và tg GCH vuông tại H có

HB=HC (cm ở câu a)

GH là cạnh chung

vậy tg GBH = tg GCH (2 cạnh góc vuông)

=> góc GBH= góc GCH (2 góc tương ứng)

ta có:

góc B= góc GBH+ góc ABG

góc C= góc GCH+ góc ACG

mà góc B = góc C(tg ABC cân tại A)

      góc GBH= góc GCH (tg GBH = tg GCH)

nên góc ABG= góc ACG

a: Ta có: ΔABC cân tại A

mà AH là đường cao

nên H là trung điểm của BC

b: BH=BC/2=3(cm)

=>AH=4(cm)

c: Ta có: AH là đường trung tuyến

mà AG là đường trung tuyến

nên A,H,G thẳng hàng

d: Xét ΔABG và ΔACG có

AB=AC

\(\widehat{BAG}=\widehat{CAG}\)

AG chung

Do đó: ΔABG=ΔACG

a: ΔABC cân tại A 

mà AH là đường cao

nên H là trung điểm của BC

=>HB=HC

b: BH=CH=6/2=3cm

AH=căn 5^2-3^2=4cm

c: Xét ΔABC có

AH là trung tuyến

G là trọng tâm

=>A,G,H thẳng hàng

d: Xét ΔABG và ΔACG có

AB=AC

góc BAG=góc CAG

AG chung

=>ΔABG=ΔACG

=>góc ABG=góc ACG

a: ΔABC cân tại A có AH là đường cao

nên H là trung điểm của BC

=>HB=HC

b: HB=HC=6/2=3cm

=>AH=căn 5^2-3^2=4cm

c: G là trọng tâm của ΔABC

=>AG là trung tuyến ứng với cạnh BC trongΔABC

=>A,G,H thẳng hàng

a:Ta có: ΔABC cân tại A

mà AH là đường cao

nên H là trung điểm của BC

=> \(BH=\dfrac{BC}{2}=3\left(cm\right)\)

nên AH=4(cm)

b: Ta có: AH là đường trung tuyến ứng với cạnh BC

mà G là trọng tâm của ΔABC

nên A,H,G thẳng hàng

c: XétΔABG và ΔACG có

AB=AC

AG chung

GB=GC

Do đó:ΔABG=ΔACG

Suy ra: \(\widehat{ABG}=\widehat{ACG}\)

10 tháng 11 2017

Bài 1:Cho góc xOy có Oz là tia phân giác,M là điểm bất kì thuộc tia Oz.Qua M kẻ đường thẳng a vuông góc với Ox tại A cắt Oy tại C và vẽ đường thẳng b vuông góc với Oy tại B cắt tia Ox tại D.
a,CM tam giác AOM bằng tam giác BOM từ đó suy ra OM là đường trung trực của đoạn thẳng AB
b,Tam giác DMC là tam giác gì?Vì sao?
c,CM DM + AM < DC
Bài 2:Cho tam giác ABC có góc A=90* và đường phân giác BH(H thuộc AC).Kẻ HM vuông góc với BC(M thuộc BC).Gọi N là giao điểm của AB và MH.CM:
a, Tam giác ABGH bằng tam giác MBH.
b, BH là đường trung trực của đoạn thẳng AH
c, AM // CN
d, BH vuông góc với CN
Bài 3:Cho tam giác ABC vuông góc tại C có góc A = 60* và đường phân giác của góc BAC cắt BC tại E.Kẻ EK vuông góc với BK tại K(K thuộc AB).Kẻ BD vuông góc với AE tại D(D thuộc AE).CM:
a, Tam giác ACE bằng tam giác AKE
b, BE là đường trung trực của đoạn thẳng CK
c, KA=KB
d, EB>EC
Bài 4:Cho tam giác ABC vuông tại A có đường phân giác của góc ABC cắt AC tại E.Kẻ EH vuông góc BC tại H(H thuộc BC).CM:
a, Tam giác ABE bằng tam giác HBE
b, BE là đường trung trực của đoạn thẳng AH
c, EC > AE
Bài 5:Cho tam giác ABC vuông tại A có đường cao AH
1,Biết AH=4cm,HB=2cm,Hc=8cm:
a,Tính độ dài cạnh AB,AC
b,CM góc B > góc C
2,Giả sử khoảng cách từ điểm A đến đường thẳng chứa cạnh BC là không đổi.Tam giác ABC cần thêm điều kiện gì để khoảng cách BC là nhỏ nhất.
Bài 6:Cho tam giác ABC vuông tại A có đường cao AH.Trên cạnh BC lấy điểm D sao cho BD=BA.
a,CM góc BAD= góc BDA
b,CM góc HAD+góc BDA=góc DAC+góc DAB.Từ đó suy ra AD là tia phân giác của góc HAC
c,Vẽ DK vuông góc AC.Cm AK=AH
d,Cm AB+AC<BC+AH
Bài 7:Cho tam giac ABC vuông tại C.Trên cạnh AB lấy điểm D sao cho AD = AC.kẻ qua D đường thẳng vuông góc với AB cắt BC tại E. AE cắt CD tại I.
a,CM AE là phân giác \{CAB}
b,CM AE là trung trực của CD
c,So sánh CD và BC
d,M là trung điểm của BC,DM cắt BI tại G,CG cắt DB tại K.CM K là trung điểm của DB
Bài 8:Cho tam giác ABC có BC=2AB.Gọi M là trung điểm của BC,N là trung điểm của BM.Trên tia đối của NA lấy điểm E sao cho AN=EN.CM:
a,Tam giác NAB=Tam giác NEM
b,Tam giác MAB là tam giác cân
c,M là trọng tâm của Tam giác AEC
d,AB>\frac{2}{3}AN

3 tháng 5 2021

a) △ABC cân tại A có AH là đường cao

⇒ AH là đường trung tuyến

\(\Rightarrow BH=\dfrac{1}{2}BC=\dfrac{1}{2}.6=3\left(cm\right)\)

△AHB vuông tại H có \(AB^2=AH^2+HB^2\\ \Rightarrow AH=\sqrt{AB^2-HB^2}=\sqrt{5^2-3^2}=4\left(cm\right)\)

b) △ABC có AH là đường trung tuyến

G là trọng tâm

\(\Rightarrow G\in AH\) hay A; G; H thẳng hàng

c) △ABC cân tại A có AH là đường cao

⇒ AH là đường phân giác

\(\Rightarrow\widehat{BAH}=\widehat{CAH}\)

△ABG và △ACG có:

\(AB=AC\\ \widehat{BAG}=\widehat{CAG}\\ AG:\text{cạnh chung}\)

\(\Rightarrow\text{△ABG = △ACG}\left(c.g.c\right)\)

\(\Rightarrow\widehat{ABG}=\widehat{ACG}\)