Cho tam giác ABC vuông tại A( AB<AC ). Về phía ngoài tam giác ABC vẽ hai tam giác ABD và tam giác ACE vuông cân ở A
a) CMR: BC = DE
b) BD song song CE
c) kẻ đường cao AH của tam giác ABC cắt DE tại M. Vẽ đường thẳng qua và vuông góc MC cắt BC tại N. CMR CA vuông góc NM
d) CMR: AM=DE/2\
Mng giúp mình với cần gấp ạ ;w;
a) \(\Delta ABC=\Delta ADE\left(c.g.c\right)\) suy ra \(BC=DE\).
b) \(\widehat{DAC}=\widehat{BAD}+\widehat{ABC}=90^o+90^o=180^o\) suy ra \(D,A,C\) thẳng hàng.
Tương tự \(B,A,E\) thẳng hàng.
Ta có: \(\widehat{BDA}=\widehat{ACE}=45^o\) mà hai góc này ở vị trí so le trong suy ra \(BD\) song song với \(CE\).
d) \(\widehat{DAM}=\widehat{HAC}\) (hai góc đối đỉnh)
\(\widehat{HAC}=\widehat{ABC}\) (vì cùng phụ với góc \(\widehat{ACB}\))
\(\widehat{ABC}=\widehat{EDA}\) (vì tam giác \(ABC\) bằng tam giác\(ADE\))
suy ra \(\widehat{DAM}=\widehat{EDA}\) suy ra tam giác \(MDA\) cân tại \(M\).
Suy ra \(MA=MD\).
Tương tự ta cũng chứng minh được \(MA=ME\).
Suy ra \(MA=\dfrac{1}{2}\left(ME+MD\right)=\dfrac{DE}{2}\).