cho a,b là các số tự nhiên và p là số tự nhiên Thỏa mãn: \(\frac{1}{p}=\frac{1}{a^2}+\frac{1}{b^2}\) . CMR: p là hợp số.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Giả sử \(p\) là số nguyên tố.
Từ \(a^2b^2=p\left(a^2+b^2\right)\Rightarrow a^2+b^2⋮p\) hoặc \(a⋮p\) và \(b⋮p\left(1\right)\)
\(\Rightarrow a^2b^2⋮p^2\Rightarrow p\left(a^2+b^2\right)⋮p^2\Rightarrow a^2+b^2⋮p\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\Rightarrow a⋮p\) và \(b⋮p\)
Từ \(a\ge p,b\ge p\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}\le\frac{2}{p^2}\Rightarrow\frac{1}{p}\le\frac{2}{p^2}\Rightarrow p\le2\left(3\right)\)
Từ \(a>2,b>2\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}\le\frac{1}{4}+\frac{1}{4}=\frac{1}{2}\Rightarrow p>2\left(4\right)\)
Từ \(\left(3\right),\left(4\right)\Rightarrow\) Mâu thuẫn \(\Rightarrow p\) là hợp số (Đpcm).
Bài 1:
Ta có \(\frac{m}{2}-\frac{2}{n}=\frac{1}{2}\) =>\(\frac{m}{2}-\frac{1}{2}=\frac{2}{n}\)
=>\(\frac{m-1}{2}=\frac{2}{n}\)
=> n(m-1) = 4
=> n và m-1 thuộc Ư(4)={1;2;4}
Ta có bảng sau:
m-1 | 1 | 2 | 4 |
n | 4 | 2 | 1 |
m | 2 | 3 | 5 |
Vậy (m;n)=(2;4),(3;2),(5;1)
Giả sử p là số nguyên tố. Từ a^2.b^2=p(a^2+b^2)=>a^2+b^2chia hết cho p hoặc achia hết cho p và b chia hết cho p (1)
=> a^2.b^2 chia hết cho p^2 => p(a^2+b^2)chia hết cho p2 =>a2+b2 chia hết cho p (2). Từ (1) và (2) =>a chia hết cho p và b chia hết cho p.
Từ a\(\ge\)p , b\(\ge\)p => \(\frac{1}{a^2}+\frac{1}{b^2}\le\frac{2}{p^2}=>\frac{1}{p}\le\frac{2}{p^2}=>p\le2\left(3\right)\)
Từ a> 2, b > 2 => \(\frac{1}{a^2}+\frac{1}{b^2}\le\frac{1}{4}+\frac{1}{4}=\frac{1}{2}\Rightarrow p>2\left(4\right)\)
Từ (3), (4) => mâu thuẫn => p là hợp số.
đúng mình cái
bài 1b
+)Nếu n chẵn ,ta có \(n^4⋮2,4^n⋮2\Rightarrow n^4+4^n⋮2\)
mà \(n^4+4^n>2\)Do đó \(n^4+4^n\)là hợp số
+)nếu n lẻ đặt \(n=2k+1\left(k\in N\right)\)
Ta có \(n^4+4^n=n^4+4^{2k}.4=\left(n^2+2.4k\right)^2-2n^2.2.4^k\)
\(=\left(n^2+2^{2k+1}\right)^2-\left(2.n.2^k\right)^2\)
\(=\left(n^2+2^{2k+1}+2n.2^k\right)\left(n^2+2^{2k+1}-2n.2^k\right)\)
\(=\left(\left(n+2^k\right)^2+2^{2k}\right)\left(\left(n-2^k\right)^2+2^{2k}\right)\)
là hợp số,vì mỗi thừa số đều lớn hơn hoặc bằng 2
(nhớ k nhé)
Bài 2a)
Nhân 2 vế với 2 ta có
\(a^4+b^4\ge2ab\left(a^2+b^2\right)-2a^2b^2\)
\(\Leftrightarrow\left(a^2+b^2\right)^2\ge2ab\left(a^2+b^2\right)\)
\(\Leftrightarrow a^2+b^2\ge2ab\Leftrightarrow\left(a-b\right)^2\ge0\)(đúng)
Dẫu = xảy ra khi \(a=b\)
Giả sử p là số nguyên tố .
Từ \(\frac{1}{a^2}+\frac{1}{b^2}=\frac{1}{p}\Rightarrow a^2b^2=p\left(a^2+b^2\right)\Rightarrow a^2+b^2\) chia hết có p hoặc a chai hết cho p,b chia hết cho p (1) \(\Rightarrow a^2b^2\)chia het cho \(p^2\Rightarrow a^2+b^2\)chia het cho p(2).
Tu (1) va (2) => chia het cho p,b chia het cho p .Tu \(a\ge p,b\ge p\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}\le\frac{2}{p^2}\Leftrightarrow\frac{1}{p}\le\frac{2}{p^2}\Rightarrow p\le2\left(3\right).\)
Tu a>2 ,b>2\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}2\left(4\right)\)
(3) và (4) mâu thuẫn => là hop số