K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2022

\(\Sigma\dfrac{1}{\sqrt[3]{x\left(y+z\right)}}\ge\dfrac{9}{\sqrt[3]{x\left(y+z\right)}+\sqrt[3]{y\left(x+z\right)}+\sqrt[3]{\left(z\left(x+y\right)\right)}}=\dfrac{9\sqrt[3]{4}}{\sqrt[3]{4}.\Sigma\sqrt[3]{x\left(y+z\right)}}\)

\(có:\sqrt[3]{4}\sqrt[3]{x\left(y+z\right)}=\sqrt[3]{2.2x.\left(y+z\right)}\le\dfrac{2+2x+y+z}{3}\)

\(tương\) \(tự\Rightarrow\Sigma\dfrac{1}{\sqrt[3]{x\left(y+z\right)}}\ge\dfrac{9.\sqrt[3]{4}}{\dfrac{2+2x+y+z}{3}+\dfrac{2+2y+x+z}{3}+\dfrac{2+2z+x+y}{3}}=\dfrac{27\sqrt[3]{4}}{6+4\left(x+y+z\right)}\ge\dfrac{27.\sqrt[3]{4}}{6+4\sqrt{3\left(x^2+y^2+z^2\right)}}=\dfrac{27\sqrt[3]{4}}{6+4\sqrt{3.3}}=\dfrac{3}{\sqrt[3]{2}}\)

\(dấu"="\Leftrightarrow x=y=z=1\)

AH
Akai Haruma
Giáo viên
11 tháng 7 2021

Lời giải:

Áp dụng BĐT AM-GM:
$\frac{x^3}{y(x+z)}+\frac{y}{2}+\frac{x+z}{4}\geq \frac{3}{2}x$

Tương tự với các phân thức còn lại, cộng theo vế và rút gọn ta được:

$\Rightarrow P=\sum \frac{x^3}{y(x+z)}\geq \frac{x+y+z}{2}$

Tiếp tục áp dụng AM-GM:

$x+y\geq 2\sqrt{xy}$

$y+z\geq 2\sqrt{yz}$

$x+z\geq 2\sqrt{xz}$

$\Rightarrow x+y+z\geq \sqrt{xy}+\sqrt{yz}+\sqrt{xz}=1$

$\Rightarrow P\geq \frac{1}{2}$

Vậy $P_{\min}=\frac{1}{2}$ khi $x=y=z=\frac{1}{3}$

 

NV
11 tháng 7 2021

\(\dfrac{x^3}{y\left(x+z\right)}+\dfrac{y}{2}+\dfrac{x+z}{4}\ge\dfrac{3x}{2}\)

Tương tự và cộng lại:

\(P+x+y+z\ge\dfrac{3}{2}\left(x+y+z\right)\)

\(\Rightarrow P\ge\dfrac{1}{2}\left(x+y+z\right)\ge\dfrac{1}{2}\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)=\dfrac{1}{2}\)

NV
2 tháng 9 2021

\(\sum\dfrac{x^2}{y^2+yz+z^2}\ge\sum\dfrac{x^2}{y^2+\dfrac{y^2+z^2}{2}+z^2}=\dfrac{2}{3}\sum\dfrac{x^2}{y^2+z^2}\ge\dfrac{2}{3}.\dfrac{3}{2}=1\) (BĐT cuối là BĐT Netsbitt)

Câu b là bài IMO 2001 USA, em có thể tìm thấy rất nhiều lời giải

NV
11 tháng 7 2021

Đặt \(\left(x;y;z\right)=\left(\dfrac{1}{a};\dfrac{1}{b};\dfrac{1}{c}\right)\Rightarrow abc=1\)

\(P=\sum\dfrac{a^4}{\left(\dfrac{1}{b}+1\right)\left(\dfrac{1}{c}+1\right)}=\sum\dfrac{a^4bc}{\left(b+1\right)\left(c+1\right)}=\sum\dfrac{a^3}{\left(b+1\right)\left(c+1\right)}\)

Ta có:

\(\dfrac{a^3}{\left(b+1\right)\left(c+1\right)}+\dfrac{b+1}{8}+\dfrac{c+1}{8}\ge\dfrac{3a}{4}\)

Tương tự và cộng lại:

\(P+\dfrac{a+b+c}{4}+\dfrac{3}{4}\ge\dfrac{3\left(a+b+c\right)}{4}\Rightarrow P\ge\dfrac{a+b+c}{2}-\dfrac{3}{4}\ge\dfrac{3}{2}-\dfrac{3}{4}=\dfrac{3}{4}\)

11 tháng 7 2021

Ta có :

\(P=\sum\dfrac{x^3}{\sqrt{y^2+3}}\ge\sum\dfrac{x^3}{\sqrt{y^2+xy+yz+zx}}\ge\sum\dfrac{x^3}{\sqrt{\left(x+y\right)\left(z+y\right)}}\\ \overset{Cosi}{\ge}\sum\dfrac{2x^3}{x+2y+z}\ge2\sum\dfrac{\left(x^2\right)^2}{x^2+2xy+xz}\\ \overset{Svacxo}{\ge}2\dfrac{\left(x^2+y^2+z^2\right)^2}{x^2+y^2+z^2+3\left(xy+yz+zx\right)}\)

\(\overset{Cosi}{\ge}\dfrac{2\left(x^2+y^2+z^2\right)^2}{4\left(x^2+y^2+z^2\right)}=\dfrac{x^2+y^2+z^2}{2}\\ \overset{Cosi}{\ge}\dfrac{xy+yz+zx}{2}\ge\dfrac{3}{2}\)

Dấu = xảy ra khi x=y=z=1

loading...

Tương tự, ta được:

\(\left(2-y\right)\left(2-z\right)>=\dfrac{\left(x+1\right)^2}{4}\)

và \(\left(2-z\right)\left(2-x\right)>=\left(\dfrac{y+1}{2}\right)^2\)

=>8(2-x)(2-y)(2-z)>=(x+1)(y+1)(z+1)

(x+yz)(y+zx)<=(x+y+yz+xz)^2/4=(x+y)^2*(z+1)^2/4<=(x^2+y^2)(z+1)^2/4

Tương tự, ta cũng co:

\(\left(y+xz\right)\left(z+y\right)< =\dfrac{\left(y^2+z^2\right)\left(x+1\right)^2}{2}\)

và \(\left(z+xy\right)\left(x+yz\right)< =\dfrac{\left(z^2+x^2\right)\left(y+1\right)^2}{2}\)

Do đó, ta được:

\(\left(x+yz\right)\left(y+zx\right)\left(z+xy\right)< =\left(x+1\right)\left(y+1\right)\left(z+1\right)\)

=>ĐPCM

 

11 tháng 7 2021

Đặt \(\sqrt{x}=a;\sqrt{y}=b;\sqrt{z}=c\Rightarrow a^3b^3+b^3c^3+c^3a^3=1\)

\(=\sum\dfrac{a^{12}}{a^6+b^6}=\sum\dfrac{a^6\left(a^6+b^6\right)}{a^6+b^6}-\sum\dfrac{a^6b^6}{a^6+b^6}\\ =\sum a^6-\sum\dfrac{a^6b^6}{a^6+b^6}\\ \overset{Cosi}{\ge}a^3b^3+b^3c^3+c^3a^2-\sum\dfrac{a^6b^6}{2a^3b^3}\\ =1-\dfrac{1}{2}\sum a^3b^3=1-\dfrac{1}{2}=\dfrac{1}{2}\)

Dấu = xảy ra khi \(x=y=z=\dfrac{1}{\sqrt[3]{3}}\)

11 tháng 7 2021

dòng 3 từ dưới lên là c^3a^3 nhé, mình gõ lỗi xíu

 

AH
Akai Haruma
Giáo viên
12 tháng 7 2021

Lời giải:
\(4P=\frac{4(x+y+z)(x+y)}{xyzt}=\frac{(x+y+z+t)^2(x+y+z)(x+y)}{xyzt}\)

Áp dụng BĐT AM-GM ta có:

\(4P\geq \frac{4t(x+y+z)(x+y+z)(x+y)}{xyzt}\Leftrightarrow P\geq \frac{(x+y+z)^2(x+y)}{xyz}\)

Tiếp tục áp dụng AM-GM:

\(P\geq \frac{4z(x+y)(x+y)}{xyz}=\frac{4(x+y)^2}{xy}\geq \frac{4.4xy}{xy}=16\)

Vậy GTNN của $P$ là $16$. Giá trị này đạt tại $x+y+z=t; x+y=z; x=y$ hay $t=1; z=\frac{1}{2}; x=y=\frac{1}{4}$