K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
17 tháng 6 2022

Lời giải:
TXĐ: $\mathbb{R}\setminus \left\{-1\right\}$

$y=\frac{x^2}{x^3+1}$

$y'=\frac{x(2-x^3)}{(x^3+1)^2}$

$y'=0\Leftrightarrow x=0$ hoặc $x=\sqrt[3]{2}$ (tm TXĐ) 

Lập bảng biến thiên với các mốc sau:

$-\infty;-1; 0; \sqrt[3]{2}; +\infty$ thì ta thu được:

Hàm nghịch biến trên $(-\infty; -1)\cup (-1;0)\cup (\sqrt[3]{2}; +\infty)$

Hàm đồng biến trên $(0;\sqrt[3]{2})$

Hàm có giá trị cực tiểu $y_{ct}=y(0)=0$ tại $x=0$

Hàm có giá trị cực đại $y_{cđ}=y(\sqrt[3]{2})=\frac{\sqrt[3]{4}}{3}$ tại $x=\sqrt[3]{2}$

NV
11 tháng 9 2021

a. ĐKXĐ: \(-3\le x\le3\)

\(y'=1-\dfrac{x}{\sqrt{9-x^2}}=\dfrac{\sqrt{9-x^2}-x}{\sqrt{9-x^2}}=0\Rightarrow x=\dfrac{3\sqrt{2}}{2}\)

Dấu của y':

undefined

Hàm đồng biến trên \(\left(-3;\dfrac{3\sqrt{2}}{2}\right)\) và nghịch biến trên \(\left(\dfrac{3\sqrt{2}}{2};3\right)\)

b.

ĐKXĐ: \(x\ne2\)

\(y'=\dfrac{\left(-2x-1\right)\left(x+2\right)+x^2+x+2}{\left(x+2\right)^2}=\dfrac{-x^2-4x}{\left(x+2\right)^2}=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)

Dấu của y':

undefined

Hàm đồng biến trên các khoảng \(\left(-4;-2\right)\) và \(\left(-2;0\right)\)

Hàm nghịch biến trên các khoảng \(\left(-\infty;-4\right)\) và \(\left(0;+\infty\right)\)

NV
12 tháng 9 2021

\(y'=-4x^3-4x=-4x\left(x^2+1\right)=0\Rightarrow x=0\)

Dấu của y':

undefined

Hàm đồng biến trên \(\left(-\infty;0\right)\) và nghịch biến trên \(\left(0;+\infty\right)\)

Qua \(x=0\) ta thấy y' đổi dấu từ dương sang âm nên \(x=0\) là điểm cực đại

20 tháng 10 2021

Tập xác định: D=\(\left[-2\sqrt{2};2\sqrt{2}\right]\).

\(y'=1-\dfrac{x}{\sqrt{8-x^2}}\) = 0 \(\Rightarrow\) x=2.

Bảng biến thiên:

undefined

Vậy hàm số đã cho đồng biến trên khoảng (\(-2\sqrt{2}\);2), nghịch biến trên khoảng (2;\(2\sqrt{2}\)) và y=4 (tại x=2).

Tham khảo: Đồ thị:

undefined

1 tháng 6 2021

TXĐ: D = R \ {-2}

Ta có: \(y'=\dfrac{\left(-2x+2\right)\left(x+2\right)-\left(-x^2+2x-1\right)}{\left(x+2\right)^2}=\dfrac{-x^2-4x+5}{\left(x+2\right)^2}\)

\(y'=0\Rightarrow-x^2-4x+5=0\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=1\end{matrix}\right.\)

⇒ Hàm số y đồng biến trên (-5, -2) và (-2, 1)

Hàm số y nghịch biến trên (-∞, -5) và (1, +∞)

27 tháng 10 2021

a: Hàm số đồng biến trên R

b: Hàm số nghịch biến trên R

NV
23 tháng 10 2021

ĐKXĐ:

a. \(\left\{{}\begin{matrix}x-1\ge0\\x-3\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge1\\x\ne3\end{matrix}\right.\)  \(\Rightarrow D=[1;+\infty)\backslash\left\{3\right\}\)

b. \(D=R\)

c. \(x+3>0\Rightarrow x>-3\Rightarrow D=\left(-3;+\infty\right)\)

d. \(\left|x-2\right|\ge0\Rightarrow x\in R\Rightarrow D=R\)

18 tháng 5 2022

non 

18 tháng 5 2022

có cc

 

19 tháng 10 2023

\(f\left(x\right)=\sqrt{x+1}+\sqrt{1-x}\) \(\left(-1\le x\le1\right)\)

\(f'\left(x\right)=\dfrac{1}{2\sqrt{x+1}}-\dfrac{1}{2\sqrt{1-x}}\)\(=\dfrac{\sqrt{1-x}-\sqrt{x+1}}{2\sqrt{1-x^2}}\)

\(f'\left(x\right)=0\Leftrightarrow x=0\)

Xét dấu \(f'\left(x\right)\)

Hàm số đồng biến trên \(\left(-1;0\right)\) và nghịch biến trên \(\left(0,1\right)\)