K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2016

a)cả hai tứ giác đều là hình bình hành

b)d/k:ABCD là hình thang vuông cân tại A hoặc B

22 tháng 1 2017

a, Xet tu giac ABMN co : 

BC=2AB

Hay : BM=MC=AB

Va : BM//AN(AD//BC)

=> ABMN hinh binh hanh 

(Tu giac co 2 cap canh song song va bang nhau thi la hinh binh hanh)

22 tháng 1 2017

hugjhgyhvbhvmn

19 tháng 12 2018

xem tren mang

DD
13 tháng 7 2021

a) Xét tam giác \(ABC\):

\(M,N\)lần lượt là trung điểm của \(AB,AC\)nên \(MN\)là đường trung bình của tam giác \(ABC\)

suy ra \(MN=\frac{1}{2}BC,MN//BC\).

Xét tam giác \(DBC\):

\(P,Q\)lần lượt là trung điểm của \(DC,DB\)nên \(PQ\)là đường trung bình của tam giác \(DBC\)

suy ra \(PQ=\frac{1}{2}BC,PQ//BC\).

Suy ra \(PQ=MN,PQ//MN\)

nên \(MNPQ\)là hình bình hành. 

b) - \(MNPQ\)là hình thoi. 

 \(MNPQ\)là hình thoi suy ra \(MN=NP\).

Tương tự ý a) ta cũng chứng minh được \(NP=\frac{1}{2}AD\)

do đó suy ra \(AD=BC\)nên \(ABCD\)là hình thang cân. 

\(MNPQ\)là hình chữ nhật.

\(MNPQ\)là hình chữ nhật suy ra \(MN\perp PQ\).

Chứng minh tương tự ý a) ta cũng có \(NP//AD\)

suy ra \(BC\perp AD\).

\(MNPQ\)là hình vuông.

\(MNPQ\)là hình vuông khi vừa là hình thoi vừa là hình chữ nhật. 

14 tháng 10 2017

1. Ta co 
la duong trung binh cua tam giac ABD 
=> MQ//BD, MQ= 0,5BD (1) 
Ta lai co NP la dg trung binh cua tam giac BCD 
=> NP//BD, NP=0,5 BD (2) 
Tu (1) va (2)=> MNPQ la hinh binh hanh 
Ta lai co QP=0,5 AC (vi la dg trung binh) 
ma ABCD la hinh thang can => AC=BD=> MQ=QP 
=>MNQP la hinh thoi 
b,Goi AH la duong cao cua hinh thang 
ta co QN la dg trung binh cua hinh thang ABC=> QN=(AB+DC):2 
MP la truc doi xung cua hinh thang ABCD=>MP vuong goc voi DC 
=> MP=AH 
=> S MNPQ= (MN.QN):2=> S MNPQ se bang 1/2 S ABCD 
=> S MNPQ=15 cm^2 

2. 

10 tháng 10 2021

a: Xét ΔABC có 

E là trung điểm của AB

F là trung điểm của BC

Do đó: EF là đường trung bình của ΔABC

Suy ra: EF//AC và \(EF=\dfrac{AC}{2}\left(1\right)\)

Xét ΔADC có 

H là trung điểm của AD

G là trung điểm của CD

Do đó: HG là đường trung bình của ΔADC

Suy ra: HG//AC và \(HG=\dfrac{AC}{2}\left(2\right)\)

Xét ΔABD có 

E là trung điểm của AB

H là trung điểm của AD

Do đó: EH là đường trung bình của ΔABD

Suy ra: \(HE=\dfrac{BD}{2}\)

mà AC=BD

nên HE=EF

Xét tứ giác EFGH có 

EF//HG

EF=HG

Do đó: EFGH là hình bình hành

mà HE=EF

nên EFGH là hình thoi