K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2017
10026
1 tháng 11 2017

1,

\(\frac{2n+2}{2n}\)\(\frac{2(n+1)}{2n}\)=\(\frac{n+1}{n}\)

=> \(\frac{2n+2}{n+1}\)= 2

=> ƯCLN(2n+2: 2n) = 2

10 tháng 2 2017

a, Gọi d là ƯCLN(2n+2;2n)

=> 2 n + 2 ⋮ d 2 n ⋮ d ⇒ 2 n + 2 - 2 n = 2 ⋮ d

Mà d là ƯCLN nên d là số lớn nhất và cũng là ước của 2.

Vậy d = 2

b, Gọi ƯCLN(3n+2 ;2n+1) = d

Ta có:  3 n + 2 ⋮ d 2 n + 1 ⋮ d ⇒ 2 3 n + 2 ⋮ d 3 2 n + 1 ⋮ d

=>[2(3n+2) – 3(2n+1)] = 1 ⋮ d

Vậy d = 1

21 tháng 12 2015

Câu hỏi tương tự nhé bạn ! 
UCLN = 7 
Tick mình nha

17 tháng 8 2015

Gọi ƯC(3n+2,2n+1)=d

=>3n+2 chia hết cho d=>2.(3n+2) chia hết cho d=>6n+4 chia hết cho d

    2n+1 chia hết cho d=>3.(2n+1) chia hết cho d=>6n+3 chia hết cho d

=>6n+4-(6n+3) chia hết cho d

=>1 chia hết cho d

=>d=1

=>ƯC(3n+2,2n+1)=1

=>ƯCLN(3n+2,2n+1)=1

Vậy ƯCLN(3n+2,2n+1)=1

14 tháng 11 2017

Gọi ƯCLN ( 2n + 3; 3n + 2 ) là d

=> 2n + 3 \(⋮\)d => 6n + 9 \(⋮\)d

=> 3n + 2 \(⋮\)d => 6n + 4 \(⋮\)d

Vì 2 biểu thức cùng chia hết cho d

=> 6n + 9 - 6n - 4 \(⋮\)d

hay 5 \(⋮\)d

Mà d lớn nhất => d = 5

Vậy................

14 tháng 11 2017

  :Gọi d là ƯCLN của 2n+3 và 3n+2

Ta thấy : 2 ( 2n + 3 ) - 3 ( 3n + 2 ) <=> ( 6n + 6  ) - ( 6n + 6 ) = 0

=> UCLN của nó chỉ có thể là 1 

Vây UCLN của 2n+3 và 3n+2 là 1

9 tháng 11 2021

\(a,76=2^2\cdot19\\ 1995=3\cdot5\cdot7\cdot19\\ \RightarrowƯCLN\left(76,1995\right)=19\)

\(b,\) Gọi \(d=ƯCLN\left(2n+1,3n+1\right)\)

\(\Rightarrow2n+1⋮d;3n+1⋮d\\ \Rightarrow3\left(2n+1\right)-2\left(3n+1\right)⋮d\\ \Rightarrow1⋮d\\ \Rightarrow d=1\)

Vậy \(ƯCLN\left(2n+1,3n+1\right)=1\)

a: UCLN(76;1995)=19

27 tháng 2 2019

6 tháng 9 2015

Gọi ƯCLN(3n+7,5n+2)=d

=>3n+7 chia hết cho d=>5.(3n+7)=15n+35 chia hết cho d

     5n+2 chia hêt cho d=>3.(5n+2)=15n+6 chia hết cho d

=>15n+35-15n-6 chia hết cho d

=>29 chia hết cho d

=>d=Ư(29)=(1,29)

Vì d là ƯCLN(3n+7,5n+2)

=>d lớn nhất

=>d=29

Vậy UCLN(3n+7,5n+2)=29

AH
Akai Haruma
Giáo viên
26 tháng 1 2021

Bài 1:

Vì ƯCLN $(a,b)=20$ nên $a\vdots 20; b\vdots 20$

$\Rightarrow a-b\vdots 20$ hay $48\vdots 20$ (vô lý)

Do đó không tồn tại $a,b$ thỏa mãn điều kiện đề bài.

AH
Akai Haruma
Giáo viên
26 tháng 1 2021

Bài 2:

a) Đề sai. Bạn cho $n=3$ thì $5n+5=20, 3n+1=10$. Hai số này có ƯCLN là $10$ nên không nguyên tố cùng nhau. 

b) Gọi ƯCLN của $2n-1$ và $9n+4$ là $d$. Khi đó:

\(\left\{\begin{matrix} 2n-1\vdots d\\ 9n+4\vdots d\end{matrix}\right.\Rightarrow \left\{\begin{matrix} 18n-9\vdots d\\ 18n+8\vdots d\end{matrix}\right.\)

\(\Rightarrow (18n+8)-(18n-9)\vdots d\) hay $17\vdots d$

$\Rightarrow d=1$ hoặc $17$

 

10 tháng 1 2015

Gọi d là ƯCLN(3n+1,5n+4)

Ta có:3n+1 chia hết cho d=>5*(3n+1)chia hết cho d

         5n+4 chia hết cho d=>3*(5n+4)chia hết cho d

=>3*(5n+4)- 5*(3n+1) chia hết cho d

hay 15n+12-15n+5 chia hết cho d

=>7 chia hết cho d

=>d thuộc Ư(7)

=>d={1,7}

Vì 3n+1 và 5n+4 ko phải là 2 số nguyên tố cùng nhau

Vậy ƯCLN(3n+1,5n+4)=7

10 tháng 1 2015

Bạn có chắc chắn câu trả lời của bạn ko?