Tim x biet
\(\frac{3}{2}X-\frac{1}{3}=\frac{1}{6}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
-5.(x+1/5) -1/2.(x-2/3)=3/2x-5/6
-5x + (-1) -1/2x -1/3=3/2x-5/6
-5x-1/2x-3/2x=1+1/3-5/6
x.(-5-1/2-3/2)= 6/6+2/6+(-5/6)
x.(-10/2+(-1/2)+(-3/2))=3/6
x.6/2=1/2
x=1/2:6/2
x=1/6
Vậy x = 1/6
\(\frac{2}{6}+\frac{2}{12}+...+\frac{2}{x.\left(x+1\right)}=\frac{2011}{2013}\)
\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2011}{2013}:2\)
\(\frac{1}{2}-\frac{1}{x+1}=\frac{2011}{4026}\)
\(\frac{\left(x+1-2\right)}{2.\left(x+1\right)}=\frac{2011}{4026}\)
Tim x biet
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2019}{2020}\)
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2019}{2020}\)
=> \(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{2019}{2020}\)
=> \(2\left(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2019}{2020}\)
=> \(2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2019}{2020}\)
=> \(1-\frac{2}{x+1}=\frac{2019}{2020}\)
=> \(\frac{2}{x+1}=\frac{1}{2020}=\frac{2}{4040}\)
=> x + 1 = 4040 => x = 4039
a, 60%x + 2/3x =1/3.6 1/3
3/5x +2/3x =1/3.19/3
x.(3/5+2/3)=19/9
x.(9/15+10/15)=19/9
x.19/15=19/9
x=19/9:19/15
x=15/9
Vậy x=15/9
b,3.(3x-1/2)^3 +1/9=0
3.(3x-1/2)^3= -1/9
(3x-1/2)^3= -1/9:3
(3x-1/2)^3= -1/27
(3x-1/2)^3=(-1/3)^3
3x-1/2= -1/3
3x= -1/3-1/2
3x= -2/6+(-3/6)
3x= -5/6
x= -5/6 :3
x=-5/18
Vậy x=-5/18
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x.\left(x+1\right):2}=\frac{2009}{2011}\)
\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x.\left(x+1\right)}=\frac{2009}{4022}\)(nhân mỗi vế với 1/2)
\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x.\left(x+1\right)}=\frac{2009}{4022}\)
\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2009}{4022}\)
\(\frac{1}{2}-\frac{1}{x+1}=\frac{2009}{4022}\)\(\Rightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{2009}{4022}=\frac{1}{2011}\)
\(\Rightarrow x+1=2011\Rightarrow x=2010\)
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x\left(x+1\right):2}=\frac{2009}{2011}\)
\(\Rightarrow\frac{1}{2}\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x\left(x+1\right):2}\right)=\frac{2009}{4022}\)
\(\Rightarrow\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{2009}{4022}\)
\(\Rightarrow\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\)\(=\frac{2009}{4022}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\)\(=\frac{2009}{4022}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2009}{4022}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{2009}{4022}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{2011}\)
\(\Rightarrow x+1=2011\)
\(\Rightarrow x=2010\)
\(\frac{3}{2}X\)\(-\)\(\frac{1}{3}\)= \(\frac{1}{6}\)
\(\frac{3}{2}X\)= \(\frac{1}{6}\)+ \(\frac{1}{3}\)
\(\frac{3}{2}X\)= \(\frac{1}{2}\)
\(X\)= \(\frac{3}{2}\): \(\frac{1}{2}\)
\(X\)= \(\frac{3}{2}\)x \(\frac{2}{1}\)
\(X\)= 3
k mình nha
Chúc bạn học giỏi
Mình cảm ơn bạn nhiều