Giải hệ phương trình \(\left\{{}\begin{matrix}2x^2+4x+y^3+3=0\\x^2y^3+y=2x\end{matrix}\right.\)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
\(\Leftrightarrow\left\{{}\begin{matrix}2x^2+4x+y^3+3=0\\x^2y^3+y=2x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x^2+2\left(x^2y^3+y\right)+y^3+3=0\left(1\right)\\x^2y^3+y=2x\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow2x^2+2x^2y^3+2y+y^3+3=0\Leftrightarrow\left(y+1\right)\left(2x^2y^2-2x^2y+y^2+2x-y+3\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=-1\Rightarrow x=-1\\2x^2y^2-2x^2y+y^2+2x^2-y+3=0\left(3\right)\end{matrix}\right.\)
\(\left(3\right)\Leftrightarrow2x^2\left(y^2-y+2\right)+y^2-y+3=0\)
\(\Rightarrow a=y^2-y+2=\left(y-\dfrac{1}{2}\right)^2+\dfrac{7}{4}>0\)
\(\Delta=0-4.2\left(y^2-y+2\right)\left(y^2-y+3\right)=-8\left(y^2-y+2\right)\left(y^2-y+3\right)\)
\(y^2-y+3=\left(y-\dfrac{1}{2}\right)^2+\dfrac{11}{4}>0\)
\(\Rightarrow\Delta=-8\left(y^2-y+2\right)\left(y^2-y+3\right)< 0\)
\(\Rightarrow\left(3\right)\) không tồn tại nghiệm (x;y) nào
do đó hpt có nghiệm x=y=-1