K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 6 2022
Sx3 = 1x2x3 + 2x3x3 + 3x4x3 + ... + 19x20x3 = 1x2x(3-0) + 2x3x(4-1) + 3x4x(5-2) + ... +19x20x(21-18) = 1x2x3 - 1x2x0 + 2x3x4 - 1x2x3 + 3x4x5 - 2x3x4 + ... + 19x20x21 - 18x19x20 = 19x20x21 19x20x21 : 3 = 7x19x20
5 tháng 6 2022

loading...  

22 tháng 10 2023

Đặt A = 1×2 + 2×3 + 3×4 + ... + 19×20

⇒ 3A = 1×2×3 + 2×3×3 + 3×4×3 + ... + 19×20×3

= 1×2×3 + 2×3×(4 - 1) + 3×4×(5 - 2) + ... + 19×20×(21 - 18)

= 1×2×3 - 1×2×3 + 2×3×4 - 2×3×4 + 3×4×5 - ... - 18×19×20 + 19×20×21

= 19×20×21

= 7980

⇒ A = 7980 : 3 = 2660

16 tháng 10 2021

\(=\dfrac{1}{3}\left(1\times2\times3+2\times3\times3+...+19\times20\times3\right)\\ =\dfrac{1}{3}\left[1\times2\times\left(3-0\right)+2\times3\times\left(4-1\right)+...+19\times20\times\left(21-18\right)\right]\\ =\dfrac{1}{3}\left(1\times2\times3-1\times2\times3+2\times3\times4-...-18\times19\times20+19\times20\times21\right)\\ =\dfrac{1}{3}\times19\times20\times21=2660\)

1 tháng 7 2015

a,333300                                                                                     b,1124942                                                                               chuẩn 100% đấy

11 tháng 9 2016

Ta có:

a) = 333300

b) = 1124942

  

9 tháng 1

\(A=1\times2+2\times3+3\times4+...+19\times20\)

\(A\times3=3\times\left(1\times2+2\times3+3\times4+...+19\times20\right)\)

\(A\times3=1\times2\times3+2\times3\times3+3\times4\times3+...+19\times20\times3\)

\(A\times3=1\times2\times3+2\times3\times\left(4-1\right)+3\times4\times\left(5-2\right)+....+19\times20\times\left(21-18\right)\)

\(A\times3=1\times2\times3-1\times2\times3+2\times3\times4-2\times3\times4+3\times4\times5+...+19\times20\times21\)

\(A\times3=\left(1\times2\times3-1\times2\times3\right)+\left(2\times3\times4-2\times3\times4\right)+...+\left(18\times19\times20-18\times19\times20\right)+19\times20\times21\)

\(A\times3=19\times20\times21\)

\(A\times3=7980\)

9 tháng 1

cảm ơn bạn nhiều nhé

19 tháng 5 2016

Ta có \(\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{998\times999}+\frac{1}{999\times1000}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{998}-\frac{1}{999}+\frac{1}{999}-\frac{1}{1000}\)

\(=1-\frac{1}{1000}\)

\(=\frac{999}{1000}\)

15 tháng 7 2017

Đặt \(A=\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+....+\frac{2}{18.19}+\frac{2}{19.20}\)

\(A=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{18}-\frac{1}{19}+\frac{1}{19}-\frac{1}{20}\right)\)

\(A=2\left(1-\frac{1}{20}\right)\)

\(A=2.\frac{19}{20}=\frac{19}{10}\)

15 tháng 7 2017

\(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{18.19}+\frac{2}{19.20}\)

\(=2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{18.19}+\frac{1}{19.20}\right)\)

\(=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{18}-\frac{1}{19}+\frac{1}{19}-\frac{1}{20}\right)\)

\(=2\left(1-\frac{1}{20}\right)\)

\(=2.\frac{19}{20}\)

\(=\frac{19}{10}\)

15 tháng 7 2023

\(\dfrac{2}{1\cdot2}+\dfrac{2}{2\cdot3}+\dfrac{2}{3\cdot4}+...+\dfrac{2}{19\cdot20}\)

\(=2\cdot\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{19}-\dfrac{1}{20}\right)\)

\(=2\cdot\left(1-\dfrac{1}{20}\right)\)

\(=2\cdot\dfrac{19}{20}\)

\(=\dfrac{19}{10}\)