\(Cho\)\(\hept{\begin{cases}a+b=c+d\\a^2+b^2=c^2+d^2\\c^{2015}+b^{2015}=2016\end{cases}}\)
\(Tính\)\(A=a^{2015}+b^{2015}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
https://l.facebook.com/l.php?u=https%3A%2F%2Fdiendan.hocmai.vn%2Fthreads%2Flai-mot-bai-hoi-bi-kho-ne.226600%2F&h=ATPqu0VSzda9HN6swPmBXeYI_mLVFweVVBz72hMQdgv8WnX0mStwGwBOxPLOstENmMST5KDKsbNuoFCvtOGM2CoqQpz94ahFl9MGizb0_iA8MRBBsDChfE7x3A22qDBUSKGjOjCJFPZu
Cho a,b,c là số dương . Chứng minh:s^2016+b^2016+c^2016>(b+c×a^2015)/2+(c+a×b^2015)/2+(a+b×a^2015)/2
\(\sqrt{x}+\sqrt{2015-y}=\sqrt{2015}\Leftrightarrow\left(\sqrt{x}+\sqrt{2015-y}\right)^2=2015\)
\(\Leftrightarrow x-y+2\sqrt{x}.\sqrt{2015-y}=0\Leftrightarrow4x.\left(2015-y\right)=\left(y-x\right)^2\)
\(\Leftrightarrow x^2+y^2-2xy=2015.4x-4xy\Leftrightarrow\left(x+y\right)^2=2015.4x\)
Tương tự : \(\sqrt{2015-x}+\sqrt{y}=\sqrt{2015}\Leftrightarrow\left(x+y\right)^2=2015.4y\)
Từ đó suy ra x = y
Tới đây bạn tự làm nhé :)