tìm 2 chữ số tận cùng
a ) 512n ; 512n+1 (n thuộc N*)
b ) 992n ; 992n+1 ; 99mũ 99 mũ 99
c ) 65n ; 65n+1 ; 6mũ 66 mũ 66
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để tính số chữ số 0 tận cùng của một tích, chúng ta cần xem xét số lượng các thừa số 2 và 5 trong tích đó.
Một chữ số 0 tận cùng sẽ được tạo ra khi có ít nhất một cặp thừa số 2 và 5 trong tích. Vì vậy, chúng ta cần xem xét số lượng các thừa số 2 và 5 trong từng tích A, B và C.
Trong trường hợp của tích A, chúng ta có 19 thừa số chẵn từ 2 đến 18. Trong số này, có 9 thừa số chia hết cho 5 (ví dụ: 10, 15). Vì vậy, chúng ta có ít nhất 9 cặp thừa số 2 và 5 trong tích A.
Trong trường hợp của tích B, chúng ta có 49 thừa số chẵn từ 2 đến 48. Trong số này, có 9 thừa số chia hết cho 5 (ví dụ: 10, 15, 20, ..., 45). Vì vậy, chúng ta có ít nhất 9 cặp thừa số 2 và 5 trong tích B.
Trong trường hợp của tích C, chúng ta có 149 thừa số chẵn từ 2 đến 148. Trong số này, chỉ có 29 thừa số chia hết cho 5 (ví dụ: 10, 15, 20, ..., 145). Vì vậy, chúng ta có ít nhất 29 cặp thừa số 2 và 5 trong tích C.
Vì tích A, B và C đều có ít nhất số cặp thừa số 2 và 5 như vậy, nên số chữ số 0 tận cùng của từng tích sẽ bằng số lượng cặp thừa số đó, tức là:
Số chữ số 0 tận cùng của A = 9 Số chữ số 0 tận cùng của B = 9 Số chữ số 0 tận cùng của C = 29
1) \(S=2.2.2..2\left(2023.số.2\right)\)
\(\Rightarrow S=2^{2023}=\left(2^{20}\right)^{101}.2^3=\overline{....6}.8=\overline{.....8}\)
2) \(S=3.13.23...2023\)
Từ \(3;13;23;...2023\) có \(\left[\left(2023-3\right):10+1\right]=203\left(số.hạng\right)\)
\(\) \(\Rightarrow S\) có số tận cùng là \(1.3^3=27\left(3^{203}=\left(3^{20}\right)^{10}.3^3\right)\)
\(\Rightarrow S=\overline{.....7}\)
3) \(S=4.4.4...4\left(2023.số.4\right)\)
\(\Rightarrow S=4^{2023}=\overline{.....4}\)
4) \(S=7.17.27.....2017\)
Từ \(7;17;27;...2017\) có \(\left[\left(2017-7\right):10+1\right]=202\left(số.hạng\right)\)
\(\Rightarrow S\) có tận cùng là \(1.7^2=49\left(7^{202}=7^{4.50}.7^2\right)\)
\(\Rightarrow S=\overline{.....9}\)
Bài 1:
S = 2 x 2 x 2 x 2 x 2 x...x 2 (2023 chữ số 2)
Nhóm 4 thừa số 2 vào một nhóm thì vì:
2023 : 4 = 505 dư 3
Vậy
S = (2x2x2x2) x...x (2 x 2 x 2 x 2) x 2 x 2 x 2 có 503 nhóm (2x2x2x2)
S = \(\overline{..6}\) x ...x \(\overline{..6}\) x 8
S = \(\overline{..6}\) x 8
S = \(\overline{..8}\)
Bài 2:
S = 3 x 13 x 23 x...x 2023
Xét dãy số: 3; 13; 23;..;2023
Dãy số trên là dãy số cách đều với khoảng cách là: 13 - 3 = 10
Số số hạng của dãy số trên là: (2023 - 3):10 + 1 = 203 (số hạng)
Vậy chữ số tận cùng của S bằng chữ số tận cùng của A.
Với A = 3 x 3 x 3 x...x 3 (203 thừa số 3)
Nhóm 4 thừa số 3 thành 1 nhóm, vì 203 : 4 = 50 (dư 3)
A = (3 x 3 x 3 x 3)x...x(3x3x3x3)x3x3x3 có 50 nhóm (3x3x3x3)
A = \(\overline{..1}\) x...x \(\overline{..1}\) x 27
A = \(\overline{..7}\)
Ta thấy:Các số có tận cùng là 0;1;5;6 khi nâng lên bất kì lũy thừa bậc nào đều có tận cùng là chính nó.
=>a)=...5
b)=...0.
c=...6
d=...1.
e)9^18=(9^2)^9=81^9=...1
2100 = 24.25 = (...6) có chữ số âận cùng là 6.
71991 = 74.497 = (...1) có chữ số tận cùng là 1
2100=24.25=(...6) có chữ số tận cùng là 6
71991=74.497=(...1) có chữ số tận cùng là 1
"=" là đồng dư
\(2017^3=3\left(mod10\right)=>\left(2017^3\right)^{672}=3^{672}\left(mod10\right)=\left(3^2\right)^{336}=\left(-1\right)^{336}=1\left(mod10\right)\)
vậy 20172016 tận cùng = 1
a) 51^2k = (51^2)^k = ....01^k= ...01