(P): y=\(-x^2\)
(d): y=-2x-3m+1
Tìm m để (x1+1)(x2+1)=1 với x1,x2 là hoành độ giao điểm của (P) và (d)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(P): y=\(-x^2\)
(d): y=-2x-3m+1
Tìm m để (x1+1)(x2+1)=1 với x1,x2 là hoành độ giao điểm của (P) và (d)
b: Phương trình hoành độ giao điểm là:
\(x^2-\left(m-1\right)x-m=0\)
\(\text{Δ}=\left(m-1\right)^2-4\cdot1\cdot\left(-m\right)=\left(m+1\right)^2>=0\)
Do đó: Phương trình luôn có hai nghiệm
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}x_1-x_2=2\\x_1+x_2=m-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x_1=m+1\\x_1-x_2=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{1}{2}m+\dfrac{1}{2}\\x_2=\dfrac{1}{2}m+\dfrac{1}{2}-2=\dfrac{1}{2}m-\dfrac{3}{2}\end{matrix}\right.\)
Theo đề, ta có: \(x_1x_2=-m\)
\(\Leftrightarrow-m=\left(\dfrac{1}{2}m+\dfrac{1}{2}\right)\left(\dfrac{1}{2}m-\dfrac{3}{2}\right)\)
Đến đây bạn chỉ cần giải phương trình bậc hai là xong
a, Hoành độ giao điểm của d và P là:
x2 = 2mx -m +1 <=> x2 -2mx +m-1
đenta = 4m2-4.(m-1) = 4m2-4m+4 = (2m)2-2.2m +1 +3=(2m-1)2+3
=> đenta >= 3
Vậy không có giá trị m để P tiếp xúc với d
b,Áp dụng định lí Vi-ét:
\(\left\{{}\begin{matrix}x1+x2=2m\\x1.x2=m-1\end{matrix}\right.\)
Ta có: x12.x2 + mx2=x2
<=> x12.x2+mx2-x2=0 <=> x12.x2 + x2(m-1)=0
<=> x12.x2+x2(x1.x2)=0 <=>x12.x2+x22.x1=0
<=>x1.x2.(x1+x2)=0 <=> (m-1).2m=0
<=> \(\left[{}\begin{matrix}m=1\\m=0\end{matrix}\right.\)
Vậy m \(\in\) \(\left\{1;0\right\}\)
Xét ptr hoành độ của `(P)` và `(d)` có:
`-x^2=-2x-3m+1`
`<=>x^2-2x-3m+1=0` `(1)`
`(P)` cắt `(d)` tại `2` hoành độ `x_1,x_2<=>` Ptr `(1)` có nghiệm
`<=>\Delta' >= 0`
`<=>(-1)^2-(-3m+1) >= 0`
`<=>1+3m-1 >= 0<=>m >= 0`
`=>` Áp dụng Viét có:`{(x_1+x_2=[-b]/a=2),(x_1.x_3=-c/a=-3m+1):}`
Ta có:`(x_1+1)(x_2+1)=1`
`<=>x_1.x_2+x_1+x_2+1=1`
`<=>-3m+1+2=0`
`<=>-3m=-3<=>m=0` (t/m)
https://hoidap247.com/cau-hoi/4629410
xóa hộ câu trl này của tui vs
Link sao chép lại : https://hoidap247.com/cau-hoi/4629316