Nếu x/a=y/b=z/c thì (b.z-c.y)/a = (c.y-a.x)/b = (a.y-b.x)/c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{bz-cy}{a}=\dfrac{cx-az}{b}=\dfrac{ay-bx}{c}\)
\(\Rightarrow\dfrac{abz-acy}{a^2}=\dfrac{bcx-abz}{b^2}=\dfrac{acy-bcx}{c^2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{abz-acy}{a^2}=\dfrac{bcx-abz}{b^2}=\dfrac{acy-bcx}{c^2}=\dfrac{abz-acy+bcx-abz+acy-bcx}{a^2+b^2+c^2}=0\)
Suy ra \(\left\{{}\begin{matrix}bz=cy\Leftrightarrow\dfrac{y}{b}=\dfrac{z}{c}\\cx=az\Leftrightarrow\dfrac{x}{a}=\dfrac{z}{c}\\ay=bx\Leftrightarrow\dfrac{x}{a}=\dfrac{y}{b}\end{matrix}\right.\Leftrightarrow\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\left(đpcm\right)\)
p/s: đã sửa đề
\(=\frac{bzx-cxy}{ax}=\frac{cxy-ayz}{by}=\frac{ayz-bzx}{cz}=\frac{bzx-cxy+cxy-ayz+ayz-bzx}{ax+by+cz}=0\)
=>bz-cy=0;cx-az=0;ay-bx=0
\(\Rightarrow\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\left(đpcm\right)\)
\(a.x-c.y+a.y+b.x-c.x+b.y\)
\(=\)\(\left(ax+bx-cx\right)+\left(ay+by-cy\right)\)
\(=\)\(x.\left(a+b-c\right)+y.\left(a+b-c\right)\)
\(=\)\(\left(-3\right)x+\left(-3\right)y\)
\(=\)\(\left(-3\right).\left(x+y\right)\)
\(=\)\(\left(-3\right).15\)
\(=\)\(-45\)
Chúc bạn học tốt
a) x^3 + x^2 - x - 1
=(x3+x2)+(-x-1)
=x2.(x+1)-(x+1)
=(x+1)(x2-1)
=(x+1)(x-1)(x+1)
=(x+1)2(x-1)
b) a^3 + a^2.b - a^2.c - a.b.c
=(a3+a2b)+(-a2c-abc)
=a2.(a+b)-ab.(a+b)
=(a+b)(a2-ab)
=a.(a+b)(a-b)