Tìm x,y,z \(\dfrac{3x-2y}{4}=\dfrac{2z-4x}{3}=\dfrac{4y-3z}{2}\) và \(x+y+z=18\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{3x-2y}{4}=\dfrac{4y-3z}{2}=\dfrac{2z-4x}{3}=\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}=\dfrac{12x-8y+6z-12x+8y-6z}{16+9+4}=\dfrac{0}{29}=0\\ \Leftrightarrow\left\{{}\begin{matrix}3x-2y=0\\2z-4x=0\\4y-3z=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{3}\\\dfrac{y}{3}=\dfrac{z}{4}\\\dfrac{z}{4}=\dfrac{x}{2}\end{matrix}\right.\\ \Leftrightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x-2y+3z}{2-6+12}=\dfrac{8}{8}=1\\ \Leftrightarrow\left\{{}\begin{matrix}x=2\\y=3\\z=4\end{matrix}\right.\)
suy ra:
\(\dfrac{4\left(3x-2y\right)}{16}=\dfrac{3\left(2z-4x\right)}{9}=\dfrac{2\left(4y-3z\right)}{4}\)
\(=\dfrac{12x-8y+6z-12x+8y-6z}{29}=0\)
Vậy
\(\dfrac{3x-2y}{4}=0\Rightarrow3x=\dfrac{2y\Rightarrow x}{2}=\dfrac{y}{3}\left(1\right)\)
\(\dfrac{2z-4x}{4}=0\Rightarrow2z=4x\Rightarrow\dfrac{x}{2}=\dfrac{z}{4}\left(2\right)\)
từ (1) và (2) ta được\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)
suy ra:
4(3x−2y)16=3(2z−4x)9=2(4y−3z)44(3x−2y)16=3(2z−4x)9=2(4y−3z)4
=12x−8y+6z−12x+8y−6z29=0=12x−8y+6z−12x+8y−6z29=0
Vậy
3x−2y4=0⇒3x=2y⇒x2=y3(1)3x−2y4=0⇒3x=2y⇒x2=y3(1)
2z−4x4=
\(\dfrac{3x-2y}{4}=\dfrac{2z-4x}{3}=\dfrac{4y-3z}{2}\)
=>\(\dfrac{4\left(3x-2y\right)}{4.4}=\dfrac{3\left(2z-4x\right)}{3.3}=\dfrac{2\left(4y-3z\right)}{2.2}\)
=>\(\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có
\(\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}=\dfrac{12x-8y+6z-12x+8y-6z}{16+9+4}=\dfrac{0}{29}=0\)
=>\(\dfrac{12x-8y}{16}=0\)
=>12x-8y=0
=>12x=8y
=>\(\dfrac{12x}{24}=\dfrac{8y}{24}\)
=>\(\dfrac{x}{2}=\dfrac{y}{3}\)(1)
Lại có \(\dfrac{8y-6z}{4}=0\)
=>8y-6z=0
=>8y=6z
=>\(\dfrac{8y}{24}=\dfrac{6z}{24}\)
=>\(\dfrac{y}{3}=\dfrac{z}{4}\)(2)
từ (1) và (2)=>\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\left(đpcm\right)\)
\(\dfrac{3x-2y}{4}=\dfrac{2z-4x}{3}=\dfrac{4y-3z}{2}\)
\(\Rightarrow\dfrac{4\left(3x-2y\right)}{16}=\dfrac{3\left(2z-4x\right)}{9}=\dfrac{2\left(4y-3z\right)}{4}\)
\(\Rightarrow\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}=\dfrac{12x-8y+6z-12x+8y-6z}{16+9+4}=\dfrac{0}{16+9+4}=0\)\(\Rightarrow\left\{{}\begin{matrix}3x=2y\\2z=4x\\4y=3z\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{3}\\\dfrac{x}{2}=\dfrac{z}{4}\\\dfrac{y}{3}=\dfrac{z}{4}\end{matrix}\right.\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+y+z}{2+3+4}=\dfrac{3}{9}=\dfrac{1}{3}\)
\(\Rightarrow\left\{{}\begin{matrix}x=2.\dfrac{1}{3}=\dfrac{2}{3}\\y=3.\dfrac{1}{3}=1\\z=4.\dfrac{1}{3}=\dfrac{4}{3}\end{matrix}\right.\)
Giải
Ta có:
\(\dfrac{3x-2y}{4}=\dfrac{2z-4x}{3}=\dfrac{4y-3z}{2}\)\(=\dfrac{12x-8y+6z-12+8y-6z}{16+9+4}\)\(=\)\(\dfrac{0}{29}=0\)
\(\Rightarrow\left\{{}\begin{matrix}3x-2y=0\Rightarrow3x=2y\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}\\2z-4x=0\Rightarrow2z=4x\Rightarrow\dfrac{x}{2}=\dfrac{z}{4}\end{matrix}\right.\)
\(\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+y+z}{2+3+4}=\dfrac{18}{9}=2\)
\(\Rightarrow\left\{{}\begin{matrix}x=2.2=4\\y=2.3=6\\z=2.4=8\end{matrix}\right.\)
Vậy \(x=4;y=6;z=8\)
Bạn học tốt!
Ta có \(\dfrac{3x-2y}{4}=\dfrac{2z-4x}{3}=\dfrac{4y-3z}{2}\)
\(\Rightarrow\dfrac{4\left(3x-2y\right)}{16}=\dfrac{3\left(2x-4x\right)}{9}=\dfrac{2\left(4y-3z\right)}{4}=\dfrac{12x-8y-12x+8y-6z}{29}\)
Do đó:
\(\dfrac{3x-2y}{4}=0\Rightarrow3x=2y\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}\left(1\right)\)
\(\dfrac{2z-4x}{3}=0\Rightarrow2z=4x\Rightarrow\dfrac{x}{2}=\dfrac{z}{4}\left(2\right)\)
Từ (1) và (2) suy ra \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\). Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+y+z}{2+3+4}=\dfrac{18}{9}=2\Rightarrow x=4;y=6;z=8\)
cảm ơn chị ạ