K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
13 tháng 4 2021

\(\Delta'=m^2-2m+3>0\) ; \(\forall x\)

Do đó bài toán thỏa mãn khi pt \(f\left(x\right)=0\) có 2 nghiệm thỏa mãn: \(x_1< -1< 2< x_2\)

\(\Leftrightarrow\left\{{}\begin{matrix}a.f\left(-1\right)< 0\\a.f\left(2\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}1.\left(1-2m+2m-3\right)< 0\\1\left(4+4m+2m-3\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow6m+1< 0\Rightarrow m< -\dfrac{1}{6}\)

NV
11 tháng 11 2021

TH1: \(m=3\Rightarrow f\left(x\right)=-5< 0\) với mọi x(ktm)

TH2: \(m>3\Rightarrow f\left(x\right)\) đồng biến trên R

\(\Rightarrow\min\limits_{\left[3;4\right]}f\left(x\right)=f\left(3\right)=3\left(m-3\right)-2m+1=m-8\)

\(m-8>0\Rightarrow m>8\)

TH3: \(m< 3\Rightarrow f\left(x\right)\) nghịch biến trên R

\(\Rightarrow\min\limits_{\left[3;4\right]}=f\left(4\right)=4\left(m-3\right)-2m+1=2m-11\)

\(2m-11>0\Rightarrow m>\dfrac{11}{2}\) (ktm điều kiện \(m< 3\))

Kết hợp lại ta được \(m>8\)

20 tháng 6 2023

Ta có \(f\left(x\right)>0,\forall x\in\left(0;1\right)\)

\(\Leftrightarrow-x^2-2\left(m-1\right)x+2m-1>0,\forall x\left(0;1\right)\)

\(\Leftrightarrow-2m\left(x-1\right)>x^2-2x+1,\forall x\in\left(0;1\right)\) (*)

Vì \(x\in\left(0;1\right)\Rightarrow x-1< 0\) nên (*) \(\Leftrightarrow-2m< \dfrac{x^2-2x+1}{x-1}=x-1=g\left(x\right),\forall x\in\left(0;1\right)\)

\(\Leftrightarrow-2m\le g\left(0\right)=-1\Leftrightarrow m\ge\dfrac{1}{2}\)

20 tháng 6 2023

Có cách nào khác nx ạ?

12 tháng 3 2020

\(f\left(x\right)=x^2-2mx+m^2-3m+2\)

\(\Leftrightarrow f\left(x\right)=\left(x-m\right)^2-3m+2\)

Ta có : \(\left(x-m\right)^2\ge0\)

Để \(f\left(x\right)>0\)

\(\Leftrightarrow-3m+2>0\)

\(\Leftrightarrow m>-\frac{2}{3}\)

Vậy để \(f\left(x\right)>0\forall x\inℝ\Leftrightarrow m>-\frac{2}{3}\)

P/s : K biết có sai chỗ nào k ạ ? Check hộ e :)

12 tháng 3 2020

Bài vừa rồi mik làm sai nhé :(( Làm lại :

\(f\left(x\right)=x^2-2mx+m^2-3m+2\)

\(\Leftrightarrow f\left(x\right)=\left(x-m\right)^2-3m+2\)

Ta thấy : \(\left(x-m\right)^2\ge0\)

Để \(f\left(x\right)>0\)

\(\Leftrightarrow-3m+2>0\)

\(\Leftrightarrow2>3m\)

\(\Leftrightarrow m< \frac{2}{3}\)

Vậy để \(f\left(x\right)>0\forall x\inℝ\Leftrightarrow m< \frac{2}{3}\)

TH1: m=-1

=>x-2>0

=>x>2(loại)

TH2: m<>-1

Δ=(-2m)^2-4*2m*(m+1)

=4m^2-8m^2-8m

=-4m^2-8m

Để BPT luôn có nghiệm thì -4m^2-8m<0 và m+1>0

=>4m^2+8m>0 và m>-1

=>4m(m+2)>0 và m>-1

=>m>0

12 tháng 3 2020

\(f\left(x\right)=x^2-2mx+m^2-3m+2>0\forall x\in R\)

\(\Leftrightarrow\left\{{}\begin{matrix}a>0\\\Delta'< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}1>0\left(lđ\right)\\\left(-m\right)^2-m^2+3m-2< 0\end{matrix}\right.\)

\(\Leftrightarrow3m-2< 0\Leftrightarrow m< \frac{2}{3}\)