Vì sao diện tích tam giác đều cạnh là a lại là \(\dfrac{a^2\sqrt{3}}{4}\) vậy?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BĐT trên bị ngược dấu rồi.
Theo công thức Heron:
\(S=\dfrac{1}{4}\sqrt{\left(a+b+c\right)\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)}\).
Do đó ta chỉ cần cm:
\(\left(a+b+c\right)\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\leq a^2b^2+b^2c^2+c^2a^2\). (1)
Ta có \(\left(1\right)\Leftrightarrow a^4+b^4+c^4-a^2b^2-b^2c^2-c^2a^2\ge0\Leftrightarrow\dfrac{\left(a^2-b^2\right)^2}{2}+\dfrac{\left(b^2-c^2\right)^2}{2}+\dfrac{\left(c^2-a^2\right)^2}{2}\ge0\) (luôn đúng).
Do đó bđt ban đầu cũng đúng.
Đẳng thức xảy ra khi tam giác đó đều.
sabc=2/3 sbcd vì có đáy ab =2/3 cd và có cc đều là chiều cao của hình thang
mà sabc +sbcd = sabcd. suy ra sabc = 2/3+2 =2/5 sabcd
mà smcd = 1/2 ht theo quy tắc ( bn tự tìm nhé đây là cô mình dạy)
sabc=2/5*1/2=1/5 smcd
smcd là : 48:1/5=240
b)khi điểm M di chuyển thì SMCD kg thay đổi vì các cạnh khác sẽ nối lại và bù lại cho phần chuyển ik
a) \(S_{ABC}=\dfrac{2}{3}\times S_{MCD}\) (vì đường cao hạ từ \(C\) đến \(AB\) của tam giác \(ABC\) bằng đường cao hạ từ \(M\) đến \(CD\) của tam giác \(MCD\), \(AB=\dfrac{2}{3}\times CD\))
\(\Leftrightarrow S_{MCD}=\dfrac{3}{2}\times S_{ABC}=\dfrac{3}{2}\times48=72\left(cm^2\right)\)
b) Không thay đổi vì khoảng cách từ \(M\) đến \(CD\) không thay đổi.
Bất đẳng thức ngược dấu rồi.
BĐT \(\Leftrightarrow\left(a+b+c\right)\prod\left(a+b-c\right)\le a^4+b^4+c^4\)
Đặt $\left\{ \begin{array}{l}a + b + c = 2s\\ab + bc + ca = {s^2} + 4Rr + {r^2}\\abc = 4sRr\end{array} \right.$
Bất đẳng thức cần chứng minh quy về:
\(16\,r{s}^{2} \left( R-2\,r \right) +2\,{s}^{2} \left( 5\,{r}^{ 2}+{s}^{2} -16\,Rr\right) +2\,{r}^{2} \left( 16\,{R}^{2}+8\,Rr+{r}^{2}-3\,{s} ^{2} \right) \geqslant 0\)
Đây là điều hiển nhiên.