tìm \(GTNN:P=x^2+5y^2+2xy-4x-8y+2015\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P = x2 + 5y2 + 2xy – 4x – 8y + 2015
= (x2 + y2 + 2xy) – 4(x + y) + 4 + 4y2 – 4y + 1 + 2010
= (x + y – 2)2 + (2y – 1)2 + 2010 ≥ 2010
=> Giá trị nhỏ nhất của P = 2010 khi x = \(\dfrac{3}{2}\); y = \(\dfrac{1}{2}\).
P = x2 + 5y2 + 2xy – 4x – 8y + 2015
= (x2 + y2 + 2xy) – 4(x + y) + 4 + 4y2 – 4y + 1 + 2010
= (x + y – 2)2 + (2y – 1)2 + 2010 ≥ 2010
=> Giá trị nhỏ nhất của P = 2010 khi x = \(\dfrac{3}{2}\); y = \(\dfrac{1}{2}\)
\(P=\left(x^2+2xy+y^2\right)-4x-4y+4+\left(4y^2-4y+1\right)+2010\)
\(=\left(x+y\right)^2-4\left(x+y\right)+4+\left(2y-1\right)^2+2010\)
\(P=\left(x+y-2\right)^2+\left(2y-1\right)^2+2010\ge2010\) với mọi \(x,y\)
Dấu \("="\) xảy ra \(\Leftrightarrow\) \(\left(x+y-2\right)^2=0\) và \(\left(2y-1\right)^2=0\)
\(\Leftrightarrow\) \(x+y-2=0\) và \(2y-1=0\)
\(\Leftrightarrow\) \(x=2-y\) và \(y=\frac{1}{2}\)
\(\Leftrightarrow\) \(x=\frac{3}{2}\) và \(y=\frac{1}{2}\)
Vậy, \(P_{min}=2010\) \(\Leftrightarrow\) \(x=\frac{3}{2};\) và \(y=\frac{1}{2}\)
a)
P = x^2 + 5y^2 + 2xy – 4x – 8y + 2015
= (x^2 + y^2 + 2xy) – 4(x + y) + 4 + 4y^2 – 4y + 1 + 2010
= (x + y – 2)^2 + (2y – 1)^2 + 2010 ≥ 2010
=> Giá trị nhỏ nhất của P = 2010 khi x = \(\frac{3}{2}\); y = \(\frac{1}{2}\)
a) \(x^2+5y^2+2xy-4x-8y+2015\)
\(=x^2+2xy+y^2+4y^2-4x-8y+2015\)
\(=\left(x+y\right)^2-4\left(x+y\right)+4+4y^2-4y+2011\)
\(=\left(x+y\right)^2-2\cdot\left(x+y\right)\cdot2+2^2+\left(2y\right)^2-2\cdot2y\cdot1+1^2+2010\)
\(=\left(x+y-2\right)^2+\left(2y-1\right)^2+2010\ge2010\forall x;y\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+y-2=0\\2y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{3}{2}\\y=\frac{1}{2}\end{cases}}\)
Vậy.....
b) \(\frac{3\left(x+1\right)}{x^3+x^2+x+1}\)
\(=\frac{3\left(x+1\right)}{x^2\left(x+1\right)+\left(x+1\right)}\)
\(=\frac{3\left(x+1\right)}{\left(x+1\right)\left(x^2+1\right)}\)
\(=\frac{3}{x^2+1}\le\frac{3}{1}=3\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=0\)
Vậy....
\(a,x^2+5y^2+2xy-4x-8y+2015\)
\(=\left(x^2+y^2+2xy\right)-4\left(x+2y\right)+4+4y^2-4y+1+2015=\left[\left(x+y\right)^2-4\left(x+2y\right)+4\right]+\left(4y^2-4y+1\right)+2015\)
\(=\left(x+y-2\right)^2+\left(2y-1\right)^2+2010\)
Do.....
Nên .....
Vậy MIN = 2010 <=> x = 3/2; y = 1/2
P/S: nhương người đi sau
\(\)
x2 + 5y2 - 2xy + 4x - 8y + 5 = 0
<=> (x2 - 2xy + y2) + 4(x - y) + 4 + (4y2 - 4y + 1) = 0
<=> (x - y)2 + 4(x - y) + 4 + (2y - 1)2 = 0
<=> (x - y + 2)2 + (2y - 1)2 = 0
<=> \(\hept{\begin{cases}x-y+2=0\\2y-1=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=2-y\\y=\frac{1}{2}\end{cases}}\)
<=> \(\hept{\begin{cases}x=2-\frac{1}{2}=\frac{3}{2}\\y=\frac{1}{2}\end{cases}}\)
\(P=x^2+5y^2+2xy-4x-8y+2015\)
\(=\left(x^2+y^2+2xy\right)-4\left(x+y\right)+4+4y^2-4y+1+2010\)
\(=\left(x+y-2\right)^2+\left(2y-1\right)^2+2010\ge2010\)
\(\Rightarrow GTNN\) của \(P=2010\) khi \(x=\dfrac{3}{2};y=\dfrac{1}{2}\)
\(P=x^2+5y^2+2xy-4x-8y+2015\)
\(P=\left(x^2+2xy+y^2\right)-4\left(x+y\right)+4+4y^2-4y+1+2010\)
\(P=\left(x+y-2\right)^2+\left(2y-1\right)^2+2010\ge2010\)
Vậy GTNN của P = 2010 khi (x + y - 2)2 + (2y - 1)2 = 0 \(\Leftrightarrow x=\dfrac{3}{2};y=\dfrac{1}{2}\)