K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác MAOB có \(\widehat{MAO}+\widehat{MBO}=180^0\)

nên MAOB là tứ giác nội tiếp

Xét (O) có

MA là tiếp tuyến

MB là tiếp tuyến

Do đó: MA=MB

mà OA=OB

nên OM là đường trung trực của AB

=>OM⊥AB

b: Xét ΔMAC và ΔMDA có 

\(\widehat{MAC}=\widehat{MDA}\)

\(\widehat{AMC}\) chung

Do đó: ΔMAC∼ΔMDA
SUy ra: MA/MD=MC/MA

hay \(MA^2=MC\cdot MD\left(1\right)\)

Xét ΔOAM vuông tại A có AH là đường cao

nên \(MH\cdot MO=MA^2\left(2\right)\)

Từ (1) và (2) suy ra \(MC\cdot MD=MH\cdot MO\)

AH
Akai Haruma
Giáo viên
30 tháng 4 2021

Lời giải:

Vì $MA,MB$ là tiếp tuyến của $(O)$ nên:

$MA\perp OA, MB\perp OB$

$\Rightarrow \widehat{MAO}=\widehat{MBO}=90^0$

Tứ giác $MAOB$ có tổng 2 góc đối: $\widehat{MAO}+\widehat{MBO}=90^0+90^0=180^0$ nên là tứ giác nội tiếp (đpcm).

Vì $OC=OD=R$ nên tam giác $OCD$ cân tại $O$

Do đó đường trung tuyến $OI$ đồng thời là đường cao

$\Rightarrow \widehat{OIM}=90^0$

Tứ giác $MIOB$ có tổng 2 góc đối $\widehat{OIM}+\widehat{OBM}=90^0+90^0=180^0$ nên là tứ giác nội tiếp (đpcm)

AH
Akai Haruma
Giáo viên
30 tháng 4 2021

Hình vẽ:

undefined

19 tháng 3 2022

1, Vì MA ; MB lần lượt là tiếp tuyến (O) với A;B là tiếp điểm 

=> ^MAO = ^MBO = 900

Xét tam giác MAOB có ^MAO + ^MBO = 1800

mà 2 góc đối Vậy tứ giác MAOB là tứ giác nt 1 đường tròn 

2, Xét tam giác MAC và tam giác MDA

^M _ chung 

^MAC = ^MDA ( cùng chắn cung AC ) 

Vậy tam giác MAC ~ tam giác MDA (g.g) 

\(\dfrac{MA}{MD}=\dfrac{MC}{MA}\Rightarrow MA^2=MD.MC\)

3, Ta có AM = MB ( tc tiếp tuyến cắt nhau ) 

OB = OA = R 

Vậy MO là đường trung trực 

Xét tam giác MAO vuông tại A, đường cao AH 

AO^2 = OH . OM ( hệ thức lượng ) 

\(\Rightarrow OM.OH+MC.MD=AO^2+AM^2=OM^2\left(pytago\right)\)

 

a: góc MAO+góc MBO=90+90=180 độ

=>MAOB nội tiếp

ΔOCD cân tại O

mà OK là trung tuýen

nên OK vuông góc CD

Xét (O) có

MA,MB là tiếp tuyến

=>MA=MB

mà OA=OB

nên OM là trung trực của AB

=>OM vuông góc AB tại H

góc OHE+góc OKE=90+90=180 độ

=>OHEK nội tiếp

b: Xét ΔMAE và ΔMKA có

góc MAE=góc MKA

góc AME chung

=>ΔMAE đồng dạng với ΔMKA

=>MA/MK=ME/MA

=>MA^2=MK*ME=MC*MD

a) Xét tứ giác MAOB có 

\(\widehat{OAM}\) và \(\widehat{OBM}\) là hai góc đối

\(\widehat{OAM}+\widehat{OBM}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: MAOB là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

Xét (O) có 

MA là tiếp tuyến có A là tiếp điểm(gt)

MB là tiếp tuyến có B là tiếp điểm(gt)
Do đó: MA=MB(Tính chất hai tiếp tuyến cắt nhau)

Ta có: OA=OB(=R)

nên O nằm trên đường trung trực của BA(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: MA=MB(cmt)

nên M nằm trên đường trung trực của BA(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra OM là đường trung trực của AB
⇔OM⊥AB(đpcm)

b) Xét (O) có 

\(\widehat{ADC}\) là góc nội tiếp chắn \(\stackrel\frown{AC}\)

\(\widehat{MAC}\) là góc tạo bởi tiếp tuyến AM và dây cung AC

Do đó: \(\widehat{ADC}=\widehat{MAC}\)(Hệ quả góc tạo bởi tia tiếp tuyến và dây cung)

hay \(\widehat{MDA}=\widehat{MAC}\)

Xét ΔMDA và ΔMAC có 

\(\widehat{MDA}=\widehat{MAC}\)(cmt)

\(\widehat{AMD}\) chung

Do đó: ΔMDA∼ΔMAC(g-g)

Suy ra: \(\dfrac{MD}{MA}=\dfrac{AD}{CA}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(MA\cdot AD=MD\cdot AC\)(đpcm)

15 tháng 2 2022

a, mình nghĩ đề là OABM nhé 

Xét (O) có MA ; MB lần lượt là tiếp tuyến với A;B là tiếp điểm 

=> ^MAO = ^MBO = 900

Xét tứ giác OAMB có ^MAO + ^MBO = 1800

mà 2 góc này đối vậy tứ giác OAMB nt 1 đường tròn 

Xét tam giác MAC và tam giác MDA có 

^M _ chung 

^MAC = ^MDA ( chắn cung AC ) 

Vậy tam giác MAC ~ tam giác MDA (g.g) 

=> MA/MD=MC/MA => MA^2 = MD.MC 

mà MA = MB ( tc tiếp tuyến cắt nhau ) 

Vậy MA . MB = MD . MC 

c, bạn xem lại đề