K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2020

A= -x2+2x+3

=>A= -(x2-2x+3)

=>A= -(x2-2.x.1+1+3-1)

=>A=-[(x-1)2+2]

=>A= -(x+1)2-2

Vì -(x+1)≤0=> A≤-2

Dấu "=" xảy ra khi

-(x+1)2=0 => x=-1

Vây A lớn nhất= -2 khi x= -1

19 tháng 12 2020

B=x2-2x+4y2-4y+8

=> B= (x2-2x+1)+(4y2-4y+1)+6

=> B=(x-1)2+(2y+1)2+6

=> B lớn nhất=6 khi x=1 và y=-1/2

7 tháng 11 2016

a/ Áp dụng BĐT Bunhiacopxki :

\(5^2=\left(1.x+2.y\right)^2\le\left(1^2+2^2\right)\left(x^2+y^2\right)\Leftrightarrow5A\ge25\Leftrightarrow A\ge5\)

Đẳng thức xảy ra khi \(\begin{cases}x=\frac{y}{2}\\x+2y=5\end{cases}\) \(\Leftrightarrow\begin{cases}x=1\\y=2\end{cases}\)

Vậy MaxA = 5 <=> (x;y) = (1;2)

b/ Áp dụng BĐT Cauchy : \(5=x+2y\ge2\sqrt{2xy}\Rightarrow xy\le\frac{25}{8}\)

Đẳng thức xảy ra khi \(\begin{cases}x=2y\\x+2y=5\end{cases}\) \(\Leftrightarrow\begin{cases}x=\frac{5}{2}\\y=\frac{5}{4}\end{cases}\)

Vậy MaxA = 25/8 <=> (x;y) = (5/2;5/4)

NV
7 tháng 11 2021

\(A=2n^2\left(2n-1\right)-3\left(2n-1\right)+2=\left(2n^2-3\right)\left(2n-1\right)+2\)

Do \(\left(2n^2-3\right)\left(2n-1\right)⋮2n-1\)

\(\Rightarrow2⋮2n-1\)

\(\Rightarrow2n-1=Ư\left(2\right)\)

Mà 2n-1 luôn lẻ \(\Rightarrow2n-1=\left\{-1;1\right\}\)

\(\Rightarrow n=\left\{0;1\right\}\)

2.

\(Q=-\left(x^2+4x+4\right)-\left(y^2-2y+1\right)+7\)

\(Q=-\left(x+2\right)^2-\left(y-1\right)^2+7\le7\)

\(Q_{max}=7\) khi \(\left(x;y\right)=\left(-2;1\right)\)

17 tháng 6 2021

\(a,-x^2+2x+5=-\left(x^2-2x-5\right)=-\left(x^2-2x+1-6\right)=-\left(x-1\right)^2+6\le6\)

dấu'=' xảy ra<=>x=1=>Max A=6

\(b,B=-x^2-y^2+4x+4y+2=-x^2+4x-4-y^2+4x-4+10\)

\(=-\left(x^2-4x+4\right)-\left(y^2-4x+4\right)+10\)

\(=-\left(x-2\right)^2-\left(y-2\right)^2+10=-\left[\left(x-2\right)^2+\left(y-2\right)^2\right]+10\le10\)

dấu"=" xảy ra<=>x=y=2=>Max B=10

\(c,C=x^2+y^2-2x+6y+12=\left(x-1\right)^2+\left(y+3\right)^2+2\ge2\)

dấu'=' xảy ra<=>x=1,y=-3=>MinC=2

 

 

 

 

7 tháng 5 2018

Áp dụng Bunyakovsky, ta có :

\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x.1+y.1\right)^2=1\)

=> \(\left(x^2+y^2\right)\ge\frac{1}{2}\)

=> \(Min_C=\frac{1}{2}\Leftrightarrow x=y=\frac{1}{2}\)

Mấy cái kia tương tự 

AH
Akai Haruma
Giáo viên
4 tháng 1 2021

Bạn tham khảo lời giải tại đây:

cho \(x,y,z\ge0\) thỏa mãn \(x y z=6\). tìm GTLN và GTNN của biểu thức \(A=x^2 y^2 z^2\) - Hoc24

A=3(x^2+2/3x-1)

=3(x^2+2*x*1/3+1/9-10/9)

=3(x+1/3)^2-10/3>=-10/3

Dấu = xảy ra khi x=-1/3

\(B=1+\dfrac{15}{x^2+x+5}=1+\dfrac{15}{\left(x+\dfrac{1}{2}\right)^2+\dfrac{19}{4}}< =1+15:\dfrac{19}{4}=1+\dfrac{60}{19}=\dfrac{79}{19}\)

Dấu = xảy ra khi x=-1/2

2 tháng 6 2023

thử hỏi dạng toán lớp 8 cho lớp 6 ai ngờ làm đc ;-;;