Tìm nghiệm của đa thức:
a) \(x^2-x\)
b) \(x^2-2x\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) F(x)=2x-5
Ta có: 2x-5=0
<=>2x=5
<=>x=5/2
=> S={5/2}
Nghiệm của đa thức F(x) là 5/2.
b) G(x)= -3x2 - 2
<=> -3x2 -2=0
(vô nghiệm)???
Em xem lại đề câu b nhé
a: f(x)=0
=>x(2x-1)=0
=>x=0 hoặc x=1/2
b: g(x)=0
=>x^2-1=0
=>x^2=1
=>x=1 hoặc x=-1
c: h(x)=0
=>x^2-3=0
=>x^2=3
=>x=căn 3 hoặc x=-căn 3
a: \(C\left(x\right)=A\left(x\right)+B\left(x\right)\)
\(=3x^4-4x^3+5x^2-4x-3-3x^4+4x^3-5x^2+2x+6\)
=-2x+3
b: Đặt C(x)=0
=>-2x+3=0
hay x=3/2
a: x^3-2x-4=0
=>x^3-2x^2+2x^2-4x+2x-4=0
=>(x-2)(x^2+2x+2)=0
=>x-2=0
=>x=2
b: 2x^3-12x^2+17x-2=0
=>2x^3-4x^2-8x^2+16x+x-2=0
=>(x-2)(2x^2-4x+1)=0
=>x=2; \(x=\dfrac{4\pm\sqrt{14}}{2}\)
Cho `A(x)=0`
`=>2x+4=0`
`=>2x=-4`
`=>x=-2`
Vậy nghiệm của đa thức `A(x)` là `x=-2`
Đặt \(A\left(x\right)=2x+4=0\)
\(\Rightarrow2x=-4\)
\(\Rightarrow x=-2\)
Vậy \(x=-2\) là nghiệm của đa thức \(A\left(x\right)\)
`f(x)=0 <=> (x-2)(x-16)-x(2-x)=0`
`(x-2)(x-16)+x(x-2)=0`
`(x-2)(x-16+x)=0`
`(x-2)(2x-16)=0`
`[(x-2=0),(2x-16=0):}`
`[(x=2),(x=8):}`.
`a)` Cho `3x+6=0`
`=>3x=-6`
=>x=-2`
Vậy nghiệm của đa thức là `x=-2`
`b)` Cho `2x^2-3x=0`
`=>x(2x-3)=0`
`@TH1:x=0`
`@TH2:2x-3=0=>2x=3=>x=3/2`
Vậy nghiệm của đa thức là `x=0` hoặc `x=3/2`
____________________________________________
Câu `2:`
Vì `(x+1)^2 >= 0 AA x`
`=>2(x+1)^2 >= 0 AA x`
`=>2(x+1)^2-5 >= -5 AA x`
Hay `A >= -5 AA x`
Dấu "`=`" xảy ra khi `(x+1)^2=0=>x+1=0=>x=-1`
Vậy `GTN N` của `A` là `-5` khi `x=-1`
Câu 1:
a, Cho 2x+6=0
2x = 0-6=-6
x = -6 :2=-3
Vậy đa thức trên có nghiệm là x=-3
b, Cho đa thức 2x2-3x=0
2xx-3x=0
x(2x-3x)=0
1,x=0
2,2x-3x=0
x(2-3)=0
-x =0
=>x=0
Vậy đa thức tên có nghiệm là x=0
Câu 2:
Để đa thức A có giá trị nhỏ nhất thì 2(x+1)2-5 phải bé nhất;
mà 2(x-1)2≥0
Dấu bằng chỉ xuất hiện khi và chỉ khi :
2(x-1)2=0
(x-1)2=0:2=0=02
=>x-1=0
x =0+1=1
=> A = 2(1-1)2-5
A =2.0-5
A 0-5 =-5
Vậy A có giá trị bé nhất là -5 với x= 1
a) Đặt \(x^2-x=0=x\left(x-1\right)=0\)
=> \(\left[{}\begin{matrix}x=0\\x-1=0\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
Vậy nghiệm của đa thức trên là 0 hoặc 1
b) Đặt \(x^2-2x=0=>x\left(x-2\right)=0=>\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
Vậy...
`a)` Cho `x^2-x=0`
`=>x(x-1)=0`
`@TH1:x=0`
`@TH2:x-1=0=>x=1`
Vậy nghiệm của đa thức là `x=0` hoặc `x=1`
___________________________________________________
`b)` Cho `x^2-2x=0`
`=>x(x-2)=0`
`@TH1:x=0`
`@TH2:x-2=0=>x=2`
Vậy nghiệm của đa thức là `x=0` hoặc `x=2`