so sánh \(\frac{1003+1}{1004}\) và \(\frac{1005+1}{1006}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\dfrac{x+1006}{1007}+\dfrac{x+1005}{1008}=\dfrac{x+1004}{1009}+\dfrac{x+1003}{1010}\)
\(\Leftrightarrow\dfrac{x+1006}{1007}+1+\dfrac{x+1005}{1008}+1=\dfrac{x+1004}{1009}+1+\dfrac{x+1003}{1010}+1\)
\(\Leftrightarrow\dfrac{x+2013}{1007}+\dfrac{x+2013}{1008}=\dfrac{x+2013}{1009}+\dfrac{x+2013}{1010}\)
\(\Leftrightarrow\dfrac{x+2013}{1007}+\dfrac{x+2013}{1008}-\dfrac{x+2013}{1009}-\dfrac{x+2013}{1010}=0\)
\(\Leftrightarrow\left(x+2013\right)\left(\dfrac{1}{1007}+\dfrac{1}{1008}-\dfrac{1}{1009}-\dfrac{1}{1010}\right)=0\)
mà \(\dfrac{1}{1007}+\dfrac{1}{1008}-\dfrac{1}{1009}-\dfrac{1}{1010}\ne0\)
nên x+2013=0
hay x=-2013
Vậy: S={-2013}
______________________________________________________
Chắc là ý : B
\(\dfrac{x-1001}{1006}+\dfrac{x-1003}{1004}+\dfrac{x-1005}{1002}+\dfrac{x-1007}{1000}=4\)
\(\Rightarrow\dfrac{x-1001}{1006}-1+\dfrac{x-1003}{1004}-1+\dfrac{x-1005}{1002}-1+\dfrac{x-1007}{1000}-1=0\)
\(\Rightarrow\dfrac{x-2007}{1006}+\dfrac{x-2007}{1004}+\dfrac{x-2007}{1002}+\dfrac{x-2007}{1000}=0\)
\(\Rightarrow\left(x-2007\right)\left(\dfrac{1}{1006}+\dfrac{1}{1004}+\dfrac{1}{1002}+\dfrac{1}{1000}\right)=0\)
Dễ thấy: \(\dfrac{1}{1000}+\dfrac{1}{1004}+\dfrac{1}{1002}+\dfrac{1}{1000}>0\Leftrightarrow x-2007=0\Leftrightarrow x=2007\)
\(\frac{x+1006}{1007}+\frac{x+1005}{1008}=\frac{x+1004}{1009}+\frac{x+1003}{1010}\)
\(\Rightarrow\left(\frac{x+1006}{1007}+1\right)+\left(\frac{x+1005}{1008}+1\right)=\left(\frac{x+1004}{1009}+1\right)+\left(\frac{x+1003}{1010}+1\right)\)
\(\Rightarrow\frac{x+2013}{1007}+\frac{x+2013}{1008}=\frac{x+2013}{1009}+\frac{x+2013}{1010}\)
\(\Rightarrow\frac{x+2013}{1007}+\frac{x+2013}{1008}-\frac{x+2013}{1009}-\frac{x+2013}{1010}=0\)
\(\Rightarrow\left(x+2013\right)\left(\frac{1}{1007}+\frac{1}{1008}-\frac{1}{1009}-\frac{1}{1010}\right)=0\)
Mà \(\frac{1}{1007}+\frac{1}{1008}-\frac{1}{1009}-\frac{1}{1010}\ne0\)
\(\Rightarrow x+2013=0\)
\(\Rightarrow x=-2013\)
Vậy x = -2013
\(A=\frac{1^2}{1.3}+\frac{2^2}{3.5}+...+\frac{1006^2}{2011.2013}\)
\(\Leftrightarrow4A=\frac{2^2.1^2}{2^2-1}+\frac{2^2.2^2}{4^2-1}+...+\frac{2^2.1006^2}{2012^2-1}\)
\(=1006+\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{2011.2013}\right)\)
\(=1006+\frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2011}-\frac{1}{2013}\right)\)
\(=1006+\frac{1}{2}\left(1-\frac{1}{2013}\right)=\frac{2026084}{2013}\)
\(\Rightarrow A=\frac{506521}{2013}\)
\(\frac{1003+1}{1004}=\frac{1004}{\cdot1004}=1=\frac{1006}{1006}=\frac{1005+1}{1006}\)
1003+1/1004 = 1005+1/1006