K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2016

Giả sử \(\sqrt{3}\)không phải số vô tỉ.

Đặt \(\sqrt{3}=\frac{m}{n}\)( m , n là các số nguyên khác 0 ;\(\frac{m}{n}\)tối giản, hay \(ƯCLN\left(m;n\right)=1\))

\(\Rightarrow\left(\sqrt{3}\right)^2=\left(\frac{m}{n}\right)^2\)

\(\Rightarrow\frac{m^2}{n^2}=3\)

\(\Rightarrow m^2=3n^2\)

\(\Rightarrow m^2\text{⋮}3\)

\(\Rightarrow m\text{⋮}3\)

Đặt \(m=3k\)

\(\Rightarrow\left(3k\right)^2=3n^2\)

\(\Rightarrow3n^2=9k^2\)

\(\Rightarrow n^2=3k^2\)

\(\Rightarrow n^2\text{⋮}3\)

\(\Rightarrow n\text{⋮}3\)

Mà \(m\text{⋮}3\) nên \(ƯCLN\left(m;n\right)\ne1\), trái với điều kiện.

Vậy \(\sqrt{3}\)là số vô tỉ.

Tương tự với \(\sqrt{5}.\)  

11 tháng 7 2023

Giả sử \(2\sqrt{2}+\sqrt{3}=x\left(x\in Q\right)\)

\(\Leftrightarrow\left(2\sqrt{2}+\sqrt{3}\right)^2=x^2\\ \Leftrightarrow11+4\sqrt{6}=x^2\\ \Leftrightarrow\sqrt{6}=\dfrac{x^2-11}{4}\)

Vì \(\sqrt{6}\) là số vô tỉ nên \(\dfrac{x^2-11}{4}\) là số vô tỉ \(\Rightarrow\) \(x^2\) là số vô tỉ, \(\Rightarrow x\) là số vô tỉ (vô lý)

Vậy \(2\sqrt{2}+\sqrt{3}\) là số vô tỉ

Giả sử \(\sqrt{3}-\sqrt{2}=x\left(x\in Q\right)\)  

\(\Leftrightarrow\left(\sqrt{3}-\sqrt{2}\right)^2=x^2\\ \Rightarrow5-2\sqrt{6}=x^2\\ \Rightarrow\sqrt{6}=\dfrac{5-x^2}{2}\)

Vì \(\sqrt{6}\) là số vô tỉ nên \(\dfrac{5-x^2}{2}\Rightarrow\) \(x^2\)là số vô tỉ, \(\Rightarrow x\) là số vô tỉ (vô lý)

Vậy \(\sqrt{3}-\sqrt{2}\) là số vô tỉ

30 tháng 5 2016

Đặt: \(\sqrt{2}=\frac{m}{n}\)

=> \(\frac{m^2}{n^2}=2\)

=> \(m^2=2n^2\)

=> \(m^2\) chia hết cho \(2\). Mà 2 là số nguyên tố nên => \(m\) chia hét cho 2

Đặt: \(m=2k\)

=> \(\frac{m^2}{n^2}=\frac{4k^2}{n^2}=2\)

=> \(4k^2=2n^2\)

=> \(n^2=2k^2\)

=> \(n^2\) chia hết cho 2. Mà 2 là số nguyên tố nên n chia hết cho 2.

Ta có \(\sqrt{2}=\frac{m}{n}=\frac{2a}{2b}\) không tối giản nên \(\sqrt{2}\) là số vo tỉ.

Các câu sau tương tự

30 tháng 5 2016

Mình dùng phương pháp phản chứng hơi tắt một tí.

Giả sử \(\sqrt{2}\) là số hữu tỉ thì sẽ có dạng \(\sqrt{2}=\frac{m}{n}\) tối giản.

Mình chứng minh \(\frac{m}{n}\) không tối giản nên \(\sqrt{2}\) là số vô tỉ

Ta có : \(\sqrt{2}\)là số vô tỉ

\(\sqrt{3}\)là số vô tỉ

\(\Rightarrow\sqrt{2}+\sqrt{3}\)là số vô tỉ ( đpcm ) 

b) tương tự :

 \(\hept{\begin{cases}\sqrt{2}vôti\\\sqrt{3}vôti\\\sqrt{5}vôti\end{cases}}\)

\(\Rightarrow\sqrt{2}+\sqrt{3}+\sqrt{5}\)vô tỉ

8 tháng 10 2019

c) \(\sqrt{2}\)là số vô tỉ nên \(1+\sqrt{2}\)là số vô tỉ

\(\Rightarrow\sqrt{1+\sqrt{2}}\)là số vô tỉ

d) \(\sqrt{3}\)là số vô tỉ\(\Rightarrow\frac{\sqrt{3}}{n}\)là số vô tỉ

\(\Rightarrow m+\frac{\sqrt{3}}{n}\)là số vô tỉ

12 tháng 11 2017

Giả sử phản chứng √12 là số hữu tỉ ⇒ √12 có thể biểu diễn dưới dạng phân số tối giản m/n 
√12 = m/n 
⇒ 12 = m²/n² 
⇒ m² = 12n² 
⇒ m² chia hết cho n² 
⇒ m chia hết cho n (vô lý vì m/n là phân số tối giản nên m không chia hết cho n) 
Vậy giả sử phản chứng là sai. Suy ra √12 là số vô tỉ.

12 tháng 11 2017

bạn ấn máy tính \(\sqrt{12}\) nếu nó ra 1 hàng số dài thì nó là số vô tỉ

12 tháng 8 2016
  1. Giả sử rằng \sqrt{2} là một số hữu tỉ. Điều đó có nghĩa là tồn tại hai số nguyên a và b sao cho \(\frac{a}{b}\) = \sqrt{2}.
  2. Như vậy \sqrt{2} có thể được viết dưới dạng một phân số tối giản (phân số không thể rút gọnđược nữa): \(\frac{a}{b}\) với ab là hai số nguyên tố cùng nhau và (\(\frac{a}{b}\))2 = 2.
  3. Từ (2) suy ra \(\frac{a^2}{b^2}\) = 2 và a2 = 2 b2.
  4. Khi đó a2 là số chẵn vì nó bằng 2 b2 (hiển nhiên là số chẵn)
  5. Từ đó suy ra a phải là số chẵn vì a2 là số chính phương chẵn (số chính phương lẻ có căn bậc hai là số lẻ, số chính phương chẵn có căn bậc hai là số chẵn).
  6. Vì a là số chẵn, nên tồn tại một số k thỏa mãn: a = 2k.
  7. Thay (6) vào (3) ta có: (2k)2 = 2b2 \Leftrightarrow 4k2 = 2b2 \Leftrightarrow 2k2 = b2.
  8. Vì 2k2 = b2 mà 2k2 là số chẵn nên b2 là số chẵn, điều này suy ra b cũng là số chẵn (lí luận tương tự như (5).
  9. Từ (5) và (8) ta có: a và b đều là các số chẵn, điều này mâu thuẫn với giả thiết \(\frac{a}{b}\) là phân số tối giản ở (2).

Từ mâu thuẫn trên suy ra: thừa nhận \sqrt{2} là một số hữu tỉ là sai và phải kết luận \sqrt{2} là số vô tỉ.

12 tháng 8 2016

Để chứng minh: "{\displaystyle {\sqrt {2}}}{\sqrt  {2}} là một số vô tỉ" người ta còn dùng phương pháp phản chứng theo một cách khác, cách này ít nổi tiếng hơn cách ở trên.

  1. Giả sử rằng {\displaystyle {\sqrt {2}}}{\sqrt  {2}} là một số hữu tỉ. Điều này có nghĩa là tồn tại hai số nguyên dương m và n sao cho m/n = {\displaystyle {\sqrt {2}}}{\sqrt  {2}}.
  2. Biến đổi đẳng thức trên, ta có: m/n = (2n - m)/(m - n).
  3. Vì {\displaystyle {\sqrt {2}}}{\sqrt  {2}} > 1, nên từ (1) suy ra m > n {\displaystyle \Leftrightarrow }\Leftrightarrow m > 2n - m.
  4. Từ (2) và (3) suy ra (2n - m)/(m - n) là phân số rút gọn của phân số m/n.

Từ (4) suy ra, m/n không thể là phân số tối giản hay {\displaystyle {\sqrt {2}}}{\sqrt  {2}} không thể là số hữu tỉ - mâu thuẫn với giả thiết {\displaystyle {\sqrt {2}}}{\sqrt  {2}} là một số hữu tỉ. Vậy {\displaystyle {\sqrt {2}}}{\sqrt  {2}} phải là số vô tỉ.

12 tháng 8 2016

Gỉa sử \(\sqrt{2}\)là số hữu tỉ

=> \(\sqrt{2}\)còn viết được dưới dạng \(\frac{m}{n}\)=> m và n là 2 số nguyên tố cùng nhau 

=>\(\left(\frac{m}{n}\right)^2=2\)

=> m2 = 2n2

=> m2 chia hết cho 2

=> m chia hết cho 2 ( 1 )

Đặt m = 2k ( k thuộc Z )

=> ( 2k )2 = 2n2

=> 2k= n2

=> n2 chia hết cho 2

=> n chia hết cho 2 ( 2 )

Từ ( 1 ) và ( 2 ) => m và n cùng chia hết cho 2

=> m và n không phải là 2 số nguyên tố cùng nhau

=> điều đã giả sử là sai

=> \(\sqrt{2}\) là số vô tỉ

k mình nha !!!

27 tháng 5 2017

Căn bậc hai. Căn bậc ba

4 tháng 9 2019

a. Giả sử \(\sqrt{3}\) không phải là số vô tỉ. Khi đó tồn tại các số nguyên a và b sao cho √3 = a/b với b > 0. Hai số a và b không có ước chung nào khác 1 và -1.

Ta có: (√3 )2 = (a/b )2 hay a2 = 3b2 (1)

Kết quả trên chứng tỏ a chia hết cho 3, nghĩa là ta có a = 3c với c là số nguyên.

Thay a = 3c vào (1) ta được: (3c)2 = 3b2 hay b2 = 3c2

Kết quả trên chứng tỏ b chia hết cho 3.

Hai số a và b đều chia hết cho 3, trái với giả thiết a và b không có ước chung nào khác 1 và -1.

Vậy √3 là số vô tỉ.

b. * Giả sử 5√2 là số hữu tỉ a, nghĩa là: 5√2 = a

Suy ra: √2 = a / 5 hay √2 là số hữu tỉ.

Điều này vô lí vì √2 là số vô tỉ.

Vậy 5√2 là số vô tỉ.

* Giả sử 3 + √2 là số hữu tỉ b, nghĩa là:

3 + √2 = b

Suy ra: √2 = b - 3 hay √2 là số hữu tỉ.

Điều này vô lí vì √2 là số vô tỉ.

Vậy 3 + √2 là số vô tỉ.

5 tháng 10 2020

Ta có: \(\sqrt{5}\) là 1 số vô tỉ

=> \(2+\sqrt{5}\) là 1 số vô tỉ

=> \(\sqrt{2+\sqrt{5}}\) là số vô tỉ

=> đpcm

5 tháng 10 2020

Giả sử \(\sqrt{2+\sqrt{5}}=q\left(q\inℚ\right)\)

\(\Rightarrow2+\sqrt{5}=q^2\inℚ\)

\(\Leftrightarrow\sqrt{5}=q-2\inℚ\)(Vô lý vì \(\sqrt{5}\in I\))

Vậy điều giả sử là sai hay \(\sqrt{2+\sqrt{5}}\)là số vô tỉ

22 tháng 11 2017

Giả sử \(\sqrt{3}\)là một số hữu tỉ 

\(\Rightarrow\sqrt{3}=\frac{a}{b}\left(a;b\ne0\right);ƯCLN\left(a,b\right)=1 \)

\(\Rightarrow3=\frac{a^2}{b^2}\)

Ta có : \(a^2=3b^2\).Mà 3 là một số nguyên tố 

=> \(a^2⋮3\Leftrightarrow a⋮3\)

Vì \(a⋮3\).=> Đặt a= 3k

=>a2 = 9k2

Thay vào ta có : 

\(3=\frac{a^2}{b^2}\)

\(\Rightarrow b^2=9k^2:3\)

\(\Rightarrow b^2=3k^2\).Vì 3 là số nguyên tố 

\(\Rightarrow b^2⋮3\Leftrightarrow b⋮3\)

Vì \(a⋮3;b⋮3\)trái với UWCLN(a,b) =1

=> \(\sqrt{3}\)là một số vô tỉ

22 tháng 11 2017

thank bạn nha