Câu 3 Cho đường tròn (O; R). Từ một điểm C bên ngoài đường tròn (O), kẻ hai tiếp tuyến CM, CN và cát tuyến CAB với đường tròn (A nằm giữa C và B). Gọi H là trung điểm của dây AB, đường thẳng HO cắt đường thẳng CN tại K, đường thẳng MH cắt đường tròn tâm O tại điểm thứ hai là J.
1. Chứng minh bốn điểm C, H, O, N cùng nằm trên một đường tròn.
2. Chứng minh KN. KC = KH. KO và NJ //AB.
1: góc CHO+góc CNO=180 độ
=>CHON nội tiếp
2: Xét ΔKON và ΔKCH có
góc KON=góc KCH
góc K chung
=>ΔKON đồng dạng với ΔKCH
=>KO/KC=KN/KH
=>KO*KH=KN*KC