K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2022

AD là tiếp tuyến của (O)

⇒ \(\widehat{DAB}=\widehat{ACB}\) ( cùng chắn \(\stackrel\frown{AB}\) )

AC là tiếp tuyến của (O)

⇒ \(\widehat{CAB}=\widehat{ADB}\) ( cùng chắn \(\stackrel\frown{AB}\) )

⇒ △ CAB ∼ △ ADB ( g - g )

⇒ \(\dfrac{CB}{AB}=\dfrac{AB}{BD}\Rightarrow AB^2=BC.BD\)

 

21 tháng 1 2021

Gọi B', C' lần lượt là giao điểm khác A của AB, AC với (O').

Do BM, CM là tiếp tuyến của (O') nên ta dễ dàng chứng minh được:

\(BM^2=BA.BB'\)\(CM^2=CA.CC'\)

\(\Rightarrow\dfrac{BM^2}{CM^2}=\dfrac{BA.BB'}{CA.CC'}\). (1) 

\(\Delta AOC\sim\Delta AO'C'(g.g)\Rightarrow \frac{AC}{AC'}=\frac{AO}{AO'}\).

Tương tự, \(\frac{AB}{AB'}=\frac{AO}{AO'}\).

Do đó \(\dfrac{AB}{AB'}=\dfrac{AC}{AC'}\Rightarrow\dfrac{AB}{BB'}=\dfrac{AC}{CC'}\Rightarrow\dfrac{AB}{AC}=\dfrac{BB'}{CC'}\). (2)

Từ (1), (2) suy ra \(\dfrac{BM}{CM}=\dfrac{AB}{AC}\).

Theo tính chất đường phân giác đảo thì AM là đường phân giác ngoài của tam giác ABC

\(\Rightarrow\widehat{MAB}+\widehat{MAC}=180^o\Rightarrow180^o+\widehat{BAC}=2\widehat{EAC}\)

\(\Rightarrow180^o-\widehat{EAC}=\dfrac{180^o-\widehat{BAC}}{2}\). (3) 

Các tứ giác FDEA, DBAC nội tiếp nên \(\widehat{FDB}=180^o-\widehat{EAC};\widehat{BDC}=180^o-\widehat{BAC}\). (4)

Từ (3), (4) suy ra \(\widehat{FDB}=\dfrac{\widehat{BDC}}{2}\) nên DF là phân giác góc BDC.

góc AEB=góc DAB(=1/2*sđ cung AB(O'))

góc ADB=góc BAE(=1/2*sđ cung AB(O))

=>ΔABD đồng dạng với ΔEBA

=>BA/BE=BD/BA

=>BA^2=BE*BD