cho đường tròn đường kính AB. C là một điểm thuộc đường kính.Qua C dựng đường thẳng vuông góc với AB,cắt đường tròn tại E và D a) CM: tam giác DAB=tam giác EAB b) Cm AB là tia phân giác của các góc DAE và DBE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
ΔACB nội tiếp đường tròn
AB là đường kính
Do đó: ΔACB vuông tại C
a)MOC vuông tại M => MOC + MCO = 90
mà ICO cân tại I => MCO = COI ; mà COI + COA =90
=> MOC = COA => OC là phân giác AOM
CM tương tự đối với OD ( IOD + DOB =90...)
b) \(\Delta\)AOC =\(\Delta\)MOC (c=g-c)
=> A =90 => CA vuông góc với OA tại A thuộc (O)
=> CA là tiếp tuyến của (O)
- CM tương tự DB là tt
c) theo a
OC là phân giác AOM ; OD là phân giác MOB
mà AOM;MOB là hai góc kề bù => OC vuông góc OD
=>\(\Delta\)COD vuông tại O
\(\Delta\)AMB vuông tại M ( OM =OA=OB =1/2 AB)
mà có góc D = B =COM ( tự cm)
=> \(\Delta\)COD đồng dạng \(\Delta\)AMD ( g-g)
d) \(\Delta\)AOC đồng dạng \(\Delta\)BDO
=>OA/BD = AC/BO => AC.BD = OA.OB = AB/2 .AB/2 = AB2/4