\(u_n=\dfrac{n+1}{2^{n+1}}\left(\dfrac{2}{1}+\dfrac{2^2}{2}+\dfrac{2^3}{3}+...+\dfrac{2^n}{n}\right)\).
Chứng minh \(\left(u_n\right)\) có giới hạn và tìm giới hạn đó.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Một câu thôi: Liên hợp
\(\dfrac{1}{2\sqrt{1}+\sqrt{2}}=\dfrac{2.1-\sqrt{2}}{2^2-2}=\dfrac{2-\sqrt{2}}{2}=1-\dfrac{1}{\sqrt{2}}\)
\(\dfrac{1}{3\sqrt{2}+2\sqrt{3}}=\dfrac{3\sqrt{2}-2\sqrt{3}}{9.2-4.3}=\dfrac{3\sqrt{2}-2\sqrt{3}}{6}=\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}\)
\(\Rightarrow\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\)
Nên chứng minh bằng quy nạp mạnh cho chặt chẽ, giờ tui buồn ngủ quá nên bạn tự chứng minh nha :(
\(\Rightarrow u_n=1-\dfrac{1}{\sqrt{n+1}}=\dfrac{\sqrt{n+1}-1}{\sqrt{n+1}}\Rightarrow\lim\limits\left(u_n\right)=\lim\limits\dfrac{\sqrt{\dfrac{n}{n}+\dfrac{1}{n}}-\dfrac{1}{\sqrt{n}}}{\sqrt{\dfrac{n}{n}+\dfrac{1}{n}}}=1\)
Ta sẽ chứng minh dãy bị chặn trên bởi 2
Thật vậy, với \(n=1;2\) thỏa mãn
Giả sử điều đó cũng đúng với \(n=k\) , tức \(u_k< 2\)
Ta cần chứng minh \(u_{k+1}< 2\)
Ta có: \(u_{k+1}=\sqrt{3u_k-2}< \sqrt{3.2-2}=2\) (đpcm)
Tương tự, ta cũng quy nạp được dễ dàng \(u_n>1\)
Mặt khác: \(u_n-u_{n-1}=\sqrt{3u_{n-1}-2}-u_{n-1}=\dfrac{3u_{n-1}-2-u_{n-1}^2}{\sqrt{3u_{n-1}-2}+u_{n-1}}\)
\(=\dfrac{\left(2-u_{n-1}\right)\left(u_{n-1}-1\right)}{\sqrt{3u_{n-1}-2}+u_{n-1}}>0\)
\(\Rightarrow u_n>u_{n-1}\Rightarrow\) dãy tăng
Dãy tăng và bị chặn trên nên có giới hạn hữu hạn.
Gọi giới hạn đó là k thì:
\(k=\sqrt{3k-2}\Leftrightarrow k=2\)
\(u_n-u_{n+1}=u_n+\left(1-u_{n+1}\right)-1\ge2\sqrt{u_n\left(1-u_{n+1}\right)}-1>0\)
\(\Rightarrow u_n>u_{n+1}\Rightarrow\) dãy giảm
Dãy giảm và bị chặn dưới bởi 0 nên có giới hạn hữu hạn.
Gọi giới hạn đó là k
\(\Rightarrow k\left(1-k\right)\ge\dfrac{1}{4}\Rightarrow\left(2k-1\right)^2\le0\Rightarrow k=\dfrac{1}{2}\)
Vậy \(\lim\left(u_n\right)=\dfrac{1}{2}\)
a.
\(u_n=\dfrac{1}{\left(2-1\right)\left(2+1\right)}+\dfrac{1}{\left(3-1\right)\left(3+1\right)}+...+\dfrac{1}{\left(n-1\right)\left(n+1\right)}\)
\(=\dfrac{1}{1.3}+\dfrac{1}{2.4}+\dfrac{1}{3.5}+...+\dfrac{1}{\left(n-2\right)n}+\dfrac{1}{\left(n-1\right)\left(n+1\right)}\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{n-2}-\dfrac{1}{n}+\dfrac{1}{n-1}-\dfrac{1}{n+1}\right)\)
\(=\dfrac{1}{2}\left(1+\dfrac{1}{2}-\dfrac{1}{n}-\dfrac{1}{n+1}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{3}{2}-\dfrac{1}{n}-\dfrac{1}{n+1}\right)\)
\(\Rightarrow\lim u_n=\lim\left(\dfrac{1}{2}\left(\dfrac{3}{2}-\dfrac{1}{n}-\dfrac{1}{n+1}\right)\right)=\dfrac{1}{2}.\dfrac{3}{2}=\dfrac{3}{4}\)
b.
\(u_n=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{n\left(n+1\right)}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n}-\dfrac{1}{n+1}\)
\(=1-\dfrac{1}{n+1}\)
\(\Rightarrow\lim u_n=\lim\left(1-\dfrac{1}{n+1}\right)=1\)
Lời giải:
\(u_{n+1}=\frac{n+2}{2^{n+2}}\left(\frac{2}{1}+...+\frac{2^{n+1}}{n+1}\right)=\frac{n+2}{2^{n+1}}\left(\frac{2^{n+1}}{n+1}u_n+\frac{2^{n+1}}{n+1}\right)=\frac{n+2}{2n+2}(u_n+1)\)
Ta chứng minh $u_n\geq 1(*)$ với mọi $n=1,2,...$
Thật vậy:
$u_1=1; u_2=\frac{3}{2}>1$. Giả sử $(*)$ đúng đến $n=k$
$u_{k+1}=\frac{k+2}{2k+2}(u_k+1)>\frac{2(k+2)}{2k+2}>1$
Do đó $u_n\geq 1$ với mọi $n=1,2,...$
Tiếp theo ta chứng minh $u_n< 1+\frac{4}{n}(**)$ với mọi $n=1,2,...$
Thật vậy:
$u_1=1< 1+\frac{4}{1}$
$u_2=\frac{3}{2}< 1+\frac{4}{2};....;u_4=\frac{5}{3}<1+\frac{4}{4}$
....
Giả sử $(**)$ đúng đến $n=k\geq 5$. Khi đó:
\(u_{k+1}=\frac{k+2}{2k+2}(u_k+1)<\frac{k+2}{2k+2}(2+\frac{4}{k})=\frac{(k+2)^2}{k(k+1)}\)
\(\frac{(k+2)^2}{k(k+1)}-(1+\frac{4}{k+1})=\frac{(k+2)^2-k(k+5)}{k(k+1)}=\frac{4-k}{k(k+1)}<0\) với mọi $k\geq 5$
$\Rightarrow u_{k+1}< 1+\frac{4}{k+1}$. Phép quy nạp hoàn tất.
Do đó $(**)$ đúng
Từ $(*); (**)\Rightarrow 1\leq u_n\leq 1+\frac{4}{n}$ với mọi $n=1,2,...$
Mà $\lim (1+\frac{4}{n})=1$ khi $n\to +\infty$ nên $\lim u_n=1$