K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2022

\(\dfrac{x+4}{5}-x+4=\dfrac{x}{3}-\dfrac{x-2}{2}\)\(\Leftrightarrow\)\(\dfrac{x+4}{5}-\dfrac{5x}{5}+\dfrac{20}{5}=\dfrac{2x}{6}-\dfrac{3\left(x-2\right)}{6}\)

\(\Leftrightarrow\)\(\dfrac{-4x+24}{5}=\dfrac{-x+6}{6}\Leftrightarrow6\cdot\left(-4x+24\right)=5\cdot\left(-x+6\right)\)

\(\Leftrightarrow\)-24x+144=-5x+30\(\Leftrightarrow\)-24x+5x=30-144\(\Leftrightarrow\)-19x=-114\(\Leftrightarrow\)x=6

14 tháng 5 2022

`x^2+\sqrt{x^2+20}=22`

`<=>x^2+20+\sqrt{x^2+20}-42=0`

Đặt `\sqrt{x^2+20}=t` `(t > 0)` khi đó ta có ptr:

      `t^2+t-42=0`

`<=>t^2+7t-6t-42=0`

`<=>t(t+7)-6(t+7)=0`

`<=>(t+7)(t-6)=0`

`<=>` $\left[\begin{matrix} t=-7\text{ (ko t/m)}\\ t=6\text{ (t/m)}\end{matrix}\right.$

    `@ t=6=>\sqrt{x^2+20}=6`

            `<=>x^2+20=36`

            `<=>x^2=16`

            `<=>x=+-4`

Vậy `S={+-4}`

11 tháng 10 2023

Để giải phương trình \(x^2 + \sqrt{x^2 + 20} = 22\), bạn có thể làm theo các bước sau:

1. Trừ 22 từ cả hai bên của phương trình để đưa các thuật ngữ chứa x về cùng một bên:

   \(x^2 + \sqrt{x^2 + 20} - 22 = 0\)

2. Bây giờ, chúng ta có một phương trình bậc hai dạng căn bậc hai. Để giải phương trình này, ta sẽ giải quyết từng phần:

   \(x^2 + \sqrt{x^2 + 20} = 22\)

3. Bây giờ, ta sẽ loại bỏ căn bậc hai bằng cách đưa nó về phía bên kia của phương trình:

   \(x^2 = 22 - \sqrt{x^2 + 20}\)

4. Bình phương cả hai phía của phương trình:

   \(x^4 = (22 - \sqrt{x^2 + 20})^2\)

5. Giải phương trình bậc bốn này:

   \(x^4 = (22 - \sqrt{x^2 + 20})^2\)

   \(x^4 = 484 - 44\sqrt{x^2 + 20} + (x^2 + 20)\)

6. Đưa các thuật ngữ chứa \(x^2\) về cùng một bên:

   \(x^4 - x^2 - 464 = - 44\sqrt{x^2 + 20}\)

7. Bình phương cả hai phía của phương trình:

   \((x^4 - x^2 - 464)^2 = (- 44\sqrt{x^2 + 20})^2\)

   \(x^8 - 2x^6 - 23x^4 + 912x^2 + 464^2 = 1936x^2 + 20\)

8. Rút gọn và sắp xếp phương trình:

   \(x^8 - 2x^6 - 23x^4 + 1916x^2 + 464^2 - 20 = 0\)

9. Đây là một phương trình bậc tám, và giải nó có thể phức tạp. Bạn có thể sử dụng phần mềm máy tính hoặc các công cụ trực tuyến để tìm các nghiệm của phương trình này. Giải nghiệm này là một phương trình bậc cao và cần một giải thuật đặc biệt.

NV
10 tháng 7 2021

\(\Leftrightarrow2sin^3x+1-sin^2x-1=0\)

\(\Leftrightarrow sin^2x\left(2sinx-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\sinx=\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\dfrac{\pi}{6}+k2\pi\\x=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)

8 tháng 11 2021

1) ĐKXĐ: \(x\ge-5\)

\(pt\Leftrightarrow x+5=9\Leftrightarrow x=9-5=4\left(tm\right)\)

2) ĐKXĐ: \(x\ge3\)

\(pt\Leftrightarrow3\sqrt{x-3}-\sqrt{x-3}=6\)

\(\Leftrightarrow2\sqrt{x-3}=6\Leftrightarrow\sqrt{x-3}=3\)

\(\Leftrightarrow x-3=9\Leftrightarrow x=12\left(tm\right)\)

3) ĐKXĐ: \(x\ge-1\)

\(pt\Leftrightarrow\sqrt{\left(x+1\right)^2}-2\sqrt{x+1}=0\)

\(\Leftrightarrow x+1-2\sqrt{x+1}=0\)

\(\Leftrightarrow\sqrt{x+1}\left(\sqrt{x+1}-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x+1=4\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-1\left(tm\right)\\x=3\left(tm\right)\end{matrix}\right.\)

16 tháng 12 2021

tui uk.......u...a

17 tháng 4 2022

x3 - 6xy + y3 = 8

<=> (x + y)3 - 3xy(x + y) - 6xy + 8 = 16

<=> (x + y + 2)(x2 + y2 - xy - 2x - 2y + 4) = 16

<=> \(\left(x+y+2\right)\left[\left(x-\dfrac{1}{2}y-1\right)^2+3\left(\dfrac{1}{2}y-1\right)^2\right]=16\)

Nhận thấy \(\left(x-\dfrac{1}{2}y-1\right)^2+3\left(\dfrac{1}{2}y-1\right)^2\ge0\)

=> x + y + 2 > 0

Khi đó 16 = 1.16 = 2.8 = 4.4

Lập bảng 

x + y + 2116428 
\(\left(x-\dfrac{1}{2}y-1\right)^2+3\left(\dfrac{1}{2}y-1\right)^2\)161482 
x      
y|     

 Đến đó bạn thế x qua y rồi làm tiếp nha

Mọi người chỉ mình ạ! Bài 1: giải phương trình \(\sqrt{5x^2}=2x-1\)* Chỉ mình tại sao bài này nếu mà bình phương 2 vế lên có giải được ra kết quả đúng không ạ. Giair thích rõ và chi tiết giúp mình nhé * Với nhưng dạng thế nào thì có thể bình phương ạ! Bài 2: \(\sqrt{16x+16}-\sqrt{9x+9}=1\)* Với bài này mình chưa tìm điều kiện luôn mà giải ra thành \(\sqrt{x+1}=1\) rồi tìm điều kiện \(x+1\ge0\) cũng được ạ các bạn. * Nó...
Đọc tiếp

Mọi người chỉ mình ạ! 

Bài 1: giải phương trình 

\(\sqrt{5x^2}=2x-1\)

* Chỉ mình tại sao bài này nếu mà bình phương 2 vế lên có giải được ra kết quả đúng không ạ. Giair thích rõ và chi tiết giúp mình nhé 

* Với nhưng dạng thế nào thì có thể bình phương ạ! 

Bài 2: \(\sqrt{16x+16}-\sqrt{9x+9}=1\)

* Với bài này mình chưa tìm điều kiện luôn mà giải ra thành \(\sqrt{x+1}=1\) rồi tìm điều kiện \(x+1\ge0\) cũng được ạ các bạn. 

* Nó có phụ thuộc vào dạng bài không ạ hay là chỉ có những bài mới được làm như vậy còn chỉ có những bài thì phải tìm điều kiện ngay từ đầu ạ ( và làm như vậy có bị mất trường hợp nào đi không) . giải thích tại sao 

Bài 3: 

Ví dụ: \(x^2\ge2x\) . 

* Tại sao khi mà chia cả hai vế cho x thì chỉ nhân 1 trường hợp ( bị thiếu trường hợp). Còn khi mà chuyển vế sang cho lớn hơn hoặc bằng 0 thì lại đủ trường hợp. giải thích mình tại sao lại bị thiếu và đủ trường hợp ạ! 

Giups mình đầy đủ chỗ (*) nhá! 

5

Bài 1: 

ĐKXĐ: \(x\ge\dfrac{1}{2}\)

Ta có: \(\sqrt{5x^2}=2x-1\)

\(\Leftrightarrow5x^2=\left(2x-1\right)^2\)

\(\Leftrightarrow5x^2-4x^2+4x-1=0\)

\(\Leftrightarrow x^2+4x-1=0\)

\(\text{Δ}=4^2-4\cdot1\cdot\left(-1\right)=20\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{-4-2\sqrt{5}}{2}=-2-\sqrt{5}\left(loại\right)\\x_2=\dfrac{-4+2\sqrt{5}}{2}=-2+\sqrt{5}\left(loại\right)\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
19 tháng 8 2021

Bài 1: Bình phương hai vế lên có giải ra được kết quả. Nhưng phải kèm thêm điều kiện $2x-1\geq 0$ do $\sqrt{5x^2}\geq 0$

PT \(\Leftrightarrow \left\{\begin{matrix} 2x-1\geq 0\\ 5x^2=(2x-1)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ x^2+4x-1=0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ (x+2)^2-5=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ (x+2-\sqrt{5})(x+2+\sqrt{5})=0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ x=-2\pm \sqrt{5}\end{matrix}\right.\) (vô lý)

Vậy pt vô nghiệm.

25 tháng 5 2022

ráng nhìn ha

undefined

undefined

25 tháng 5 2022

ui chữ cj đẹp ghê

19 tháng 9 2016

\(3x^4+4x^3-3x^2-2x+1=0\)

\(\Leftrightarrow3x^4+x^3-x^2+3x^3+x^2-x-3x^2-x+1=0\)

\(\Leftrightarrow x^2\left(3x^2+x-1\right)+x\left(3x^2+x-1\right)-\left(3x^2+x-1\right)=0\)

\(\Leftrightarrow\left(x^2+x-1\right)\left(3x^2+x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2+x-1=0\left(1\right)\\3x^2+x-1=0\left(2\right)\end{cases}}\)

  • \(\Delta_{\left(1\right)}=1^2-\left(-4\left(1.1\right)\right)=5\)

\(\Leftrightarrow x_{1,2}=\frac{-1\pm\sqrt{5}}{2}\left(tm\right)\)

  • \(\Delta_{\left(2\right)}=1^2-\left(-4\left(3.1\right)\right)=13\)

\(x_{1,2}=\frac{-1\pm\sqrt{13}}{6}\left(tm\right)\)

18 tháng 9 2021

\(\dfrac{x+2}{x-2}-\dfrac{2}{x^2-2x}=\dfrac{1}{x}\left(đk:x\ne0,x\ne2\right)\)

\(\Leftrightarrow\dfrac{\left(x+2\right)x-2}{x\left(x-2\right)}=\dfrac{x^2-2x}{x\left(x-2\right)}\)

\(\Leftrightarrow x^2+2x-2=x^2-2x\)

\(\Leftrightarrow4x=2\Leftrightarrow x=\dfrac{1}{2}\)

18 tháng 9 2021

Cho mình sửa lại nhé:

\(\dfrac{x+2}{x-2}-\dfrac{2}{x^2-2x}=\dfrac{1}{x}\left(đk:x\ne0,x\ne2\right)\)

\(\Leftrightarrow\dfrac{\left(x+2\right)x-2}{x\left(x-2\right)}=\dfrac{x-2}{x\left(x-2\right)}\)

\(\Leftrightarrow x^2+2x-2=x-2\)

\(\Leftrightarrow x^2+x=0\)

\(\Leftrightarrow x\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=-1\left(tm\right)\end{matrix}\right.\)

3 tháng 3 2022

\(\dfrac{x^2+2}{x^2+4}=0\\ \Leftrightarrow x^2+2=0\)

Ta có: \(x^2\ge0;2>0\Rightarrow x^2+2>0\)

Vậy pt vô nghiệm

3 tháng 3 2022

hình như ko đúng lắm ạ