Tìm \(x\)
\(\left(7x-11\right)^3=2^5.5^2+200\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(7x−11)3 = 25 . 52 + 200
(7x−11)3 = 32 . 25 + 200
(7x−11)3 = 1000
(7x−11)3 = 103
7x−11 = 10
7x = 10 + 11
7x = 21
x = 21 : 7
x = 3
(7x-11)3 = 25.52+ 23.52
(7x-11)3 = 23.52( 22+1)
(7x-11)3 = 23.53=(2.5)3
7x-11=10
x=3
a) \(2^x\)\(-\)\(64\)\(=\)\(2^6\)
\(2^x\)\(-\)\(2^6\)\(=\)\(2^6\)
\(2^x\) \(=\)\(2^6\)\(+\)\(2^6\)
\(2^x\) \(=\) \(64\)\(+\)\(64\)
\(2^x\) \(=\) \(128\)
\(\Rightarrow\) \(2^x\) \(=\) \(2^7\)
b) \(\left(7x-11\right)\)\(^3\)\(=\)\(2^5\)\(.\)\(5^2\)\(+\)\(200\)
\(\left(7x-11\right)\)\(^3\)\(=\)\(32\)\(.\)\(25\)\(+\)\(200\)
\(\left(7x-11\right)\)\(^3\)\(=\) \(1000\)
\(\left(7x-11\right)\)\(^3\)\(=\) \(10^3\)
\(\Rightarrow\)\(7x-11\)\(=\)\(10\)
\(7x\) \(=\)\(10+11\)
\(7x\) \(=\) \(21\)
\(x\) \(=\) \(21\)\(:\)\(7\)
\(x\) \(=\) \(3\)
\(2^x-64=2^6\)
\(2^x-64=64\)
\(2^x=64+64\)
\(2^x=128\)
\(\)Vì \(128=2^7\) \(\Rightarrow x=7\)
\(\left(7x-11\right)^3=2^5.5^2+200\)
=> \(\left(7x-11\right)^3=32.25+200\)
=>\(\left(7x-11\right)^3=800+200\)
=>\(\left(7x-11\right)^3=1000\)
=>\(\left(7x-11\right)^3=10^3\)
=> \(7x-11=10\)
=>\(7x=21\)
=>\(x=3\)
Vậy x = 3
\(\left(7x-11\right)^3=2^5\cdot5^2+200\)
\(\left(7x-11\right)^3=800+200\)
\(\left(7x-11\right)^3=1000\)
\(\left(7x-11\right)^3=10^3\)
\(\Rightarrow7x-11=10\)
\(7x=10+11\)
\(7x=21\)
\(x=21\div7\)
\(x=3\)
Ta có: \(\left(7x-11\right)^3=2^5+5^2+200=1000\)
\(\Rightarrow\left(7x-11\right)^3=10^3\)
\(\Rightarrow7x-11=10\)
\(\Rightarrow7x=21\)
\(\Rightarrow x=3\)
Trả lời:
\(\left(7x-11\right)^3=2^5.5^2+200\)
\(\Leftrightarrow\left(7x-11\right)^3=32.25+200\)
\(\Leftrightarrow\left(7x-11\right)^3=800+200\)
\(\Leftrightarrow\left(7x-11\right)^3=1000\)
\(\Leftrightarrow7x-11=10\)
\(\Leftrightarrow7x=21\)
\(\Leftrightarrow x=3\)
Vậy\(x=3\)
Hok tốt!
Good girl
b) x^10=1x
=> x=0 ; 1
c)(2x-15)^5=(2x-15)^3
=> (2x-15)^4 = (2x-15)^2
=> (2x-15)^2 =1
=> 2x-15=1
=> x=8
(7x-11)3=25.52+200
(7x-11)3=32.25+200
(7x-11)3=800+200
(7x-11)3=1000
(7x-11)3=103
=> 7x-11=10
7x=10+11
7x=21
x=21/7
x=3
720 : [41-(2x-5)] =2^3 . 5
<=> 41-(2x-5)=720:40=18
<=> 2x-5=41-18=23
<=>2x=23+5=28
<=> x=28:2=14
2^x-15=17
<=> 2^x=17+15=32
<=> 2^x=2^5
<=> x=5
(7x-11)^3= 2^5.5^2+200
<=> (7x-11)^3=1000
<=> (7x-11)^3=10^3
<=> 7x-11=10
<=> 7x=10+11=21
<=> x=21:7=3
e) \(\left(2x-15\right)^5=\left(2x-15\right)^3\)
\(\Rightarrow\left(2x-15\right)^5-\left(2x-15\right)^3=0\)
\(\Rightarrow\left(2x-15\right)^3\cdot\left(2x-15\right)^2-\left(2x-15\right)^3=0\)
\(\Rightarrow\left(2x-15\right)^3\cdot\left[\left(2x-15\right)^2-1\right]=0\)
\(\Rightarrow\left(2x-15\right)^3=0\) hoặc \(\left(2x-15\right)^2-1=0\)
+)TH1: \(\left(2x-15\right)^3=0\)
\(\Rightarrow2x-15=0\)
\(\Rightarrow2x=15\)
\(\Rightarrow x=\frac{15}{2}\)
+)TH2: \(\left(2x-15\right)^2-1=0\)
\(\Rightarrow\left(2x-15\right)^2=1\)
\(\Rightarrow\left[{}\begin{matrix}2x-15=1\\2x-15=-1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}2x=16\\2x=14\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=8\\x=7\end{matrix}\right.\)
Vậy \(x=\frac{15}{2}\) hoặc \(x=8\) hoặc \(x=7\)
a) \(2^x-17=15\Rightarrow2^x=32\)
Mà \(2^5=32\Rightarrow x=5\)
Vậy x = 5
b)\(\left(7x-11\right)^3=2^5\cdot5^2+200\)
\(\Rightarrow\left(7x-11\right)^3=1000\)
\(\Rightarrow\left(7x-11\right)^3=10^3\)
\(\Rightarrow7x-11=10\)
\(\Rightarrow7x=21\)
\(\Rightarrow x=3\)
Vậy x = 3
c)\(x^{10}=1^x\Rightarrow x^{10}=1\)(số 1 có luỹ thừa là bao nhiêu thì vẫn là 1 thui)\(\Rightarrow x=1\)
Vậy x = 1
d) \(x^{10}=x\Rightarrow x^{10}-x=0\)
\(\Rightarrow x\left(x^9-1\right)=0\)
\(\Rightarrow x=0\) hoặc \(x^9-1=0\)
+)TH1: \(x=0\)
+)TH2: \(x^9-1=0\Rightarrow x^9=1\Rightarrow x=1\)
Vậy x = 0 hoặc x = 1
\(\left(7x-11\right)^3=2^5.5^2+200\)
\(\Leftrightarrow\left(7x-11\right)^3=1000\)
\(\Leftrightarrow7x-11=10\)
\(\Leftrightarrow7x=21\)
\(\Leftrightarrow x=3\)
\(\left(7x-11\right)^3=2^5.5^2+200\)
\(\Rightarrow\left(7x-11\right)^3=32.25+200\)
\(\Rightarrow\left(7x-11\right)^3=800+200\)
\(\Rightarrow\left(7x-11\right)^3=1000=10^3\)
\(\Rightarrow7x-11=10\)
\(\Rightarrow7x=21\)
\(\Rightarrow x=3\)