Cho góc bẹt AOB.Ve các tia OC ,OD cùng phía đối với AB sao cho góc AOC = góc BOD = 40độ . Gọi OE ;à tia đối của OD . Tia OA là tia phân giác của góc nào?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có : \(\widehat{AOC}+\widehat{COB}=180^o\)( kề bù )
\(135^o+\widehat{COB}=180^o\)
\(\widehat{COB}=180^o-135^o\)
\(\widehat{COB}=45^o\)
Ta có : \(\widehat{BOC}+\widehat{COD}=\widehat{BOD}\)
\(45^o+\widehat{COD}=135^o\)
\(\widehat{COD}=135^o-45^o\)
\(\widehat{COD}=90^o\)
Ta có : \(\widehat{DOC}+\widehat{COE}=180^o\)( kề bù )
\(90^o+\widehat{COE}=180^o\)
\(\widehat{COE}=90^o\)
\(\Rightarrow OC\perp OE\)
b) Ta có : \(\widehat{COB}+\widehat{BOE}=\widehat{COE}\)
\(45^o+\widehat{BOE}=90^o\)
\(\widehat{BOE}=90^o-45^o\)
\(\widehat{BOE}=45^o\)
\(\Rightarrow\widehat{BOE}=\widehat{COB}=\frac{\widehat{COE}}{2}\)
Vậy OB là tia phân giác của \(\widehat{COE}\)
Bài giải
Ta có : \(\widehat{AOC}=\widehat{BOD}\left(=135^o\right)\)
\(\widehat{DOC}\) chung và OC và OD cùng nằm trên cùng một nửa mặt phẳng nên \(\widehat{DOA}=\widehat{COB}\)
Mà \(\widehat{DOA}=\widehat{EOB}\) ( hai góc đối đỉnh ) nên \(\widehat{BOC}=\widehat{BOE}\)
\(\Rightarrow\text{ }OB\text{ là tia phân giác }\widehat{COE}\)
Ta có : \(\widehat{BOE}\) và \(\widehat{BOD}\) kề bù nên \(\widehat{BOE}+\widehat{BOD}=180^o\)
\(\Rightarrow\text{ }\widehat{BOE}+135^o=180^o\text{ }\Rightarrow\text{ }\widehat{BOE}=45^o\)
Ta lại có : \(\widehat{COD}+\widehat{COE}=180^o\)
\(\widehat{COD}+90^o=180^o\)
\(\widehat{COD}=90^o\)
\(\text{ }\Rightarrow\text{ }OC\perp OE\)
Ta có: \(\widehat{AOC}+\widehat{COD}+\widehat{BOD}=\widehat{AOB}=180^o\)
\(\widehat{AOC}+\widehat{BOD}=180^o-\widehat{COD}=180^o-70^o=110^o\) (1)
Mà: \(\widehat{AOC}-\widehat{BOD}=10^o\Rightarrow\widehat{AOC}=\widehat{BOD}+10^o\) (2)
Thay (2) vào (1) ta có:
\(\left(\widehat{BOD}+10^o\right)+\widehat{BOD}=110^o\)
\(\Rightarrow2\widehat{BOD}+10^o=110^o\)
\(\Rightarrow2\widehat{BOD}=110^o-10^o\)
\(\Rightarrow\widehat{BOD}=\dfrac{100^o}{2}=50^o\)
\(\widehat{AOC}=\widehat{BOD}+10^o=50^o+10^o=60^o\)
góc AOC+góc DOC+góc DOB=180 độ
=>góc AOC+góc DOB=110 độ
mà góc AOC-góc BOD=10 độ
nên góc AOC=(110+10)/2=60 độ và góc BOD=60-10=50 độ
Hai góc AOC và BOC kề bù nên A O C ^ + B O C ^ = 180 °
⇒ B O C ^ = 180 ° − 150 ° = 30 ° .
Tương tự, ta tính được A O D ^ = 30 ° .
Ta có B O E ^ = A O D ^ = 30 ° (hai góc đối đỉnh).
Suy ra B O C ^ = B O E ^ = 30 ° . (1)
Tia OB nằm giữa hai tia OC và OE. (2)
Từ (1) và (2) ta được tia OB là tia phân giác của góc COE
Đếm góc, đếm tia
Ta có : Vì OE là tia phân giác của góc COD nên :
góc COE =góc EOD +1/2 góc COD
Ta có \(\widehat{AOB}\)= \(\widehat{AOC}\)+\(\widehat{COE}\)+\(\widehat{EOD}\)+\(\widehat{DOB}\)
=(AOC + COE )+(EOD +DOB )
180 = (AOC + COE ) x 2
=> (AOC + COE ) =90
hay EOB = 90
Vậy OE vuông góc với AB
góc AOE=góc BOD=góc AOC
=>OA là phân giác của góc COE