Tìm điều kiện để 10^n - 1 chia hết cho 9 và 11
các bạn giúp mình gấp nha, mình cảm ơn !!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(n+2) chia hết (n+2)
=>[(3n+10)-(n+2)] chia hết cho (n+2)
[(3n+10)-(n+2)x3] chia hết cho (n+2)
[(3n+10)-(3n+6)] chia hết cho (n+2)
=4 chia hết cho (n+2)
Ư(4)={1;2;4}
(n+2) | n | chọn/loại |
1 | -1 | loại |
2 | 0 | chọn |
4 | 2 | chọn |
n thuộc {0;2}
Do 10n - 1 chia hết cho 9 và 11 mà (9;11)=1
=> 10n - 1 chia hết cho 99
=> 10n chia 99 dư 1
+ Với n = 0 thì 10n = 100 = 1 chia 99 dư 1, chọn
+ Với n = 1 thì 10n = 101 = 10, loại
+ Với n = 2 thì 10n = 102 = 100 chia 99 dư 1, chọn
Như vậy ta thấy 102 chia 9 dư 1, mũ lên bao nhiêu vẫn chia 9 dư 1
=> với n = 2k (k thuộc N) thỏa mãn đề bài
Vậy n = 2k (k thuộc N)
Ủng hộ mk nha ^_-
Nếu abc : 3 dư 1 hoặc 2 thì viết 3 lần : abcabcabc
Vì : abc : 3 dư 1
abc = x . 3 + 1
abc . 3 = { x . 3 + 1 } . 3 = x . 3 . 3 + 1 . 3
abc : 3 dư 2(tương tự)