Tìm số tự nhiên n sao cho:
a) \(2.27\le3^n\le243\)
b) \(16< 2^n< 2^{2n-3}.2^{8-2n}\)
*Giúp mình nhé...Mình đang cần gấp. Thanks mấy bạn nhiều!!! =))
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình xin lỗi mình đánh máy sai câu hỏi như này
A) n+7 chia hết cho n+2 ( với n khác 2 )
B) 3n+1 chia hết cho 2n+3
ta có : \(6n-3=3\times\left(2n-2\right)+3\) chia hết cho 2n-2 khi
3 chia hết cho 2n-2
mà 2n-2 là số chẵn nên 3 không thể chia hết cho 2n-2 vậy không tồn tại số tự nhiên thỏa mãn
Gọi b là ước nguyên tố của \(\frac{2n-1}{3n+2}\)
\(2n-1 \vdots b\)
\(3n+2 \vdots b\)
\(=> 6n - 3 \vdots b\)
\(=> 6n + 4 \vdots b\)
\(=> (6n+4) -(6n-3) \vdots b = 6n - 4 - 6n-3 = 7 \vdots b\)
\(b\) là nguyên tố nên \(b=7\)
Ta có : \(3n + 2\vdots 7 => (3n+2-14) \vdots 7 => (3n - 12)\vdots 7 = (3n - 3.4)\vdots 7 = 3(n-4) \vdots 7\)
\(=> n-4 \vdots 7\)
\(=> n-4 = 7k => n = 7k + 4\)
Vậy để a là phân số tối giản \(n = 7k + 4\)
Chắc olm lỗi nên có 1 phần bị khuất mình viết lại vào nhé
Ta có :
2n - 1 chia hết cho b
3n + 2 chia hết cho b
=> 6n - 3 chia hết cho b
=> 6n + 4 chia hết cho b
=> 6n + 4 - (6n - 3) = 6n + 4 - 6n + 3 = 7 chia hết cho b
Vì b là nguyên tố nên b = 7
Ta có :
3n + 2 chia hết cho 7 => 3n + 2 - 14 = 3n - 12 chia hết cho 7 ( hai số chia hết cho 7 thì hiệu chúng chia hết cho 7)
3n - 12 = 3n - 3.4 = 3.(n-4) chia hết cho 7 ( tính chất phân phối của phép nhân)
=> n - 4 chia hết cho 7
=> n - 4 = 7.k
n = 7k + 4
Vậy để a là phân số tối giản thì n = 7k + 4
+ Nếu n chia hết cho 3 thì tích chia hết cho 3
+ Nếu n chia 3 dư 1 thì 2n chia 3 dư 2 => 2n+1 chia hết cho 3 => tích chia hết cho 3
+ nếu n chia 3 dư 2 => n+1 chia hết cho 3 => tích chia hết cho 3
=> tích chia hết cho 3 với mọi n
a) 3^1=3
3^4=81
3^5=243
vậy n=1 đến 5
b)2^(2n-3).2^(8-2n)=2^[2n-3+(8-2n)]=2^(2n-3+8-2n)=2^5
16=2^4<2^n<2^5
n= không có
A! Bạn ơi! Bạn có thể giải thích câu a đc hong. Mình không hiểu cho lắm...