Tìm nghiệm của đa thức:
A(x) = 2x+4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Đặt \(x^2-x=0=x\left(x-1\right)=0\)
=> \(\left[{}\begin{matrix}x=0\\x-1=0\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
Vậy nghiệm của đa thức trên là 0 hoặc 1
b) Đặt \(x^2-2x=0=>x\left(x-2\right)=0=>\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
Vậy...
a: x^3-2x-4=0
=>x^3-2x^2+2x^2-4x+2x-4=0
=>(x-2)(x^2+2x+2)=0
=>x-2=0
=>x=2
b: 2x^3-12x^2+17x-2=0
=>2x^3-4x^2-8x^2+16x+x-2=0
=>(x-2)(2x^2-4x+1)=0
=>x=2; \(x=\dfrac{4\pm\sqrt{14}}{2}\)
a) F(x)=2x-5
Ta có: 2x-5=0
<=>2x=5
<=>x=5/2
=> S={5/2}
Nghiệm của đa thức F(x) là 5/2.
b) G(x)= -3x2 - 2
<=> -3x2 -2=0
(vô nghiệm)???
Em xem lại đề câu b nhé
Ta có \(A\left(x\right)=\dfrac{1}{3}x+1=0\Leftrightarrow x=-1:\dfrac{1}{3}=-3\)
\(B\left(x\right)=-\dfrac{3}{4}x+\dfrac{1}{3}\Leftrightarrow x=-\dfrac{1}{3}\left(-\dfrac{3}{4}\right)=4\)
\(C=\left(2x-4\right)\left(x+1\right)=0\Leftrightarrow x=2;x=-1\)
\(D\left(x\right)-4x\left(x-2\right)=0\Leftrightarrow x=0;x=2\)
a: f(x)=0
=>x(2x-1)=0
=>x=0 hoặc x=1/2
b: g(x)=0
=>x^2-1=0
=>x^2=1
=>x=1 hoặc x=-1
c: h(x)=0
=>x^2-3=0
=>x^2=3
=>x=căn 3 hoặc x=-căn 3
Đặt A(x)=0
=>5x2+9x+4=0
=>5x2+5x+4x+4=0
=>(x+1)(5x+4)=0
=>x=-1 hoặc x=-4/5
Ta có A(x) = \(5x^2+9x+4\)
= \(5x^2+5x+4x+4\)
= \(5x\left(x+1\right)\) + \(4\left(x+1\right)\)
= \(\left(x+1\right)\left(5x+4\right)\)
Ta có \(\left(x+1\right)\left(5x+4\right)\)= 0
=> \(\left[{}\begin{matrix}x+1=0\\5x+4=0\end{matrix}\right.=>\left[{}\begin{matrix}x=-1\\5x=-4\end{matrix}\right.=>\left[{}\begin{matrix}x=-1\\x=\dfrac{-4}{5}\end{matrix}\right.\)
Vậy đa thức có nghiệm là -1 hoặc -4/5
a: \(C\left(x\right)=A\left(x\right)+B\left(x\right)\)
\(=3x^4-4x^3+5x^2-4x-3-3x^4+4x^3-5x^2+2x+6\)
=-2x+3
b: Đặt C(x)=0
=>-2x+3=0
hay x=3/2
Cho `A(x)=0`
`=>2x+4=0`
`=>2x=-4`
`=>x=-2`
Vậy nghiệm của đa thức `A(x)` là `x=-2`
Đặt \(A\left(x\right)=2x+4=0\)
\(\Rightarrow2x=-4\)
\(\Rightarrow x=-2\)
Vậy \(x=-2\) là nghiệm của đa thức \(A\left(x\right)\)