\(\text{Chứng minh phương trình sau luôn có nghiệm: a c o s 2 x + b s i n x + c o s x = 0}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Đúng
Vì x 2 + 1 > 0 với mọi x nên phương trình đã cho tương đương với phương trình:
4x – 8 + (4 – 2x) = 0 ⇔ 2x – 4 = 0 ⇔ 2x = 4 ⇔ x = 2
b. Đúng
Vì x 2 – x + 1 = x - 1 / 2 2 + 3/4 > 0 với mọi x nên phương trình đã cho tương đương với phương trình:
(x + 2)(2x – 1) – x – 2 = 0 ⇔ (x + 2)(2x – 2) = 0
⇔ x + 2 = 0 hoặc 2x – 2 = 0 ⇔ x = - 2 hoặc x = 1
c. Sai
Vì điều kiện xác định của phương trình là x + 1 ≠ 0 ⇔ x ≠ - 1
Do vậy phương trình không thể có nghiệm x = - 1
d. Sai
Vì điều kiện xác định của phương trình là x ≠ 0
Do vậy x = 0 không phải là nghiệm của phương trình
Chứng minh rằng các phương trình sau luôn có nghiệm: a)x^5 - 3x+3=0 b)x^5+x-1=0 c)x^4+x^3-3x^2+x+1=0
Lời giải:
a) $f(x)=x^5-3x+3$ liên tục trên $R$
$f(0)=3>0; f(-2)=-23<0\Rightarrow f(0)f(-2)<0$
Do đó pt $f(x)=0$ có ít nhất 1 nghiệm thuộc $(-2;0)$
Nghĩa là pt đã cho luôn có nghiệm.
b) $f(x)=x^5+x-1$ liên tục trên $R$
$f(0)=-1<0; f(1)=1>0\Rightarrow f(0)f(1)<0$
Do đó pt $f(x)=0$ luôn có ít nhất 1 nghiệm thuộc $(0;1)$
Hay pt đã cho luôn có nghiệm.
c) $f(x)=x^4+x^3-3x^2+x+1$ liên tục trên $R$
$f(0)=1>0; f(-1)=-3<0\Rightarrow f(0)f(-1)<0$
$\Rightarrow f(x)=0$ luôn có ít nhất 1 nghiệm thuộc $(-1;0)$
Hay pt đã cho luôn có nghiệm.
Ta có : \(\left(x-a\right)\left(x-b\right)+\left(x-b\right)\left(x-c\right)+\left(x-c\right)\left(x-a\right)=0\)
\(\Leftrightarrow3x^2-2\left(a+b+c\right)x+\left(ab+bc+ac\right)=0\)
Xét \(\Delta'=\left(a+b+c\right)^2-3\left(ab+bc+ac\right)=a^2+b^2+c^2-ab-bc-ac\)
Mặt khác ta lại có ; \(\hept{\begin{cases}\left(a-b\right)^2\ge0\\\left(b-c\right)^2\ge0\\\left(c-a\right)^2\ge0\end{cases}\Rightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ac\right)\Rightarrow}a^2+b^2+c^2-ab-bc-ac\ge0\)
Do đó : \(\Delta'\ge0\)
Vậy kết luận : Phương trình luôn có nghiệm.
a) Vì \({13^2} - 24.13 + 143 = 0\) nên \(x = 13\) là nghiệm của phương trình \( \Rightarrow 13 \in S\)
Vậy mệnh đề “\(13 \in S\)” đúng.
b) Vì \({11^2} - 24.11 + 143 = 0\) nên \(x = 11\) là nghiệm của phương trình \( \Rightarrow 11 \in S\)
Vậy mệnh đề “\(11 \notin S\)” sai.
c) Ta có:
\(\begin{array}{l}{x^2} - 24x + 143 = 0\\ \Leftrightarrow {x^2} - 11x - 13x + 11.13 = 0\\ \Leftrightarrow x.\left( {x - 11} \right) - 13.\left( {x - 11} \right) = 0\\ \Leftrightarrow \left( {x - 11} \right).\left( {x - 13} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 11\\x = 13\end{array} \right.\end{array}\)
Tập nghiệm của phương trình là \(S=\{11;13\}\)
Phương trình có 2 nghiệm hay \(n\;(S) = 2\)
=> Mệnh đề “\(n\;(S) = 2\)” đúng.
\(\text{Đặt f (x)= a.cos2x+b.sinx+cosx}\)
\(\text{Hàm f (x) xác định và liên tục trên R}\)
\(\text{f ( π /4 ) = b √2 /2 + √2 /2 }\)
\(\text{f ( 5/π4 ) = − b √ 2/ 2 − √ 2/ 2 }\)
\(\text{⇒ f (π /4) . f ( 5 π/ 4 ) = − 1/2 ( b + 1 )^ 2 ≤ 0 ; ∀ a ; b ; c}\)
\(⇒ f (x)= 0 luôn có ít nhất 1 nghiệm thuộc đoạn [ π /4 ; 5π/4]\)
Hay pt đã có nghiệm.