K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔDFE có DM/DE=DN/DF

nên MN//EF

17 tháng 2 2020

D E F M N

Tính DN

Xét ΔDEF, MN//EF,M\(\in DE, N\in DF\), ta có:

\(\frac{DM}{DE}= \frac{DN}{DF}\)

\( \Rightarrow \frac{4}{6}=\frac{DN}{9}\)

\( \Leftrightarrow DN=\frac{4.9}{6}=6\)

25 tháng 3 2021

Cho tam giác DEF có DE=4cm,EF=5cm,DF=6cm.trên cạnh DE lấy điểm M sao cho DM=3cm,trên cạnh DF lấy điểm N sao cho DN=2cm a,CM: DEF đồng dạng DMN b, tính MN

a) Xét ΔDEF và ΔDNM có 

\(\dfrac{DE}{DN}=\dfrac{DF}{DM}\left(\dfrac{4}{2}=\dfrac{6}{3}\right)\)

\(\widehat{D}\) chung

Do đó: ΔDEF∼ΔDNM(c-g-c)

3 tháng 3 2018

D E F N M I

a)   XÉT \(\Delta DEM\)VÀ \(\Delta DEN\)

       ^D CHUNG 

         DM=DN                        \(\Rightarrow\Delta DEM=\Delta DEN\left(C-G-C\right)\)=>  ^DEM=^DEN

         DF=DE

b)   VÌ ^DEF=^DFE MÀ ^DEM=^DEN =>^IEF=^IFE  \(\Rightarrow\Delta IEF\)CÂN

c)    TA CÓ \(\Delta DNM\)CÂN TẠI D NÊN ^DMN=^DNM=\(\frac{180^0-D}{2}\)(1)

      TA  LẠI CÓ \(\Delta DÈF\)CÂN TẠI D NÊN ^DEF=^DFE=\(\frac{180^0-D}{2}\)(2)

     TỪ (1) VÀ (2) => ^DMN=^DFE 

     MÀ 2 GÓC NÀY Ở VỊ TRÍ ĐỒNG VỊ NÊN NM // EF

17 tháng 3 2020

1) tam giác DEF có MN//EF

=> \(\frac{DM}{ME}=\frac{DN}{NF}=>\frac{2}{2}=\frac{3,5}{NF}=>NF=\frac{3,5.2}{2}=3,5cm\)

2)tam giasc DEF cos KI//EF

=>\(\frac{DK}{KE}=\frac{DI}{IF}=\frac{3}{1}=\frac{4,2}{IF}=IF=\frac{1.4,2}{3}=1,4cm\)

3 tháng 5 2016

D E F

a/ Vì EF2=DE2+DF2 (Pytago)

=> Tam giác DEF vuông tại D

a: ED=EM

=>ΔEDM cân tại E

=>góc EDM=góc EMD

b: góc NDM+góc EDM=90 độ

góc KDM+góc EMD=90 độ

mà góc EDM=góc EMD

nên góc NDM=góc KDM

=>DM là phân giác của góc KDN

c: Xét ΔDKM và ΔDNM có

DK=DN

góc KDM=góc nDM

DM chung

=>ΔDKM=ΔDNM

=>DK=DN và MK=MN và góc DNM=góc DKM=90 độ

=>ΔDNM vuông tại N

=>DM^2=ND^2+NM^2