\(^{x^2+\frac{8x^3}{\sqrt{9-x^2}}=9}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\lim\limits_{x\rightarrow0}\frac{\left(\sqrt{8x^3+x^2+6x+9}-\left(x+3\right)\right)+\left(x+3-\sqrt[3]{9x^2+27x+27}\right)}{x^3}\)
\(=\lim\limits_{x\rightarrow0}\frac{\frac{8x^3}{\sqrt{8x^3+x^2+6x+9}+x+3}+\frac{x^3}{\left(x+3\right)^2+\left(x+3\sqrt[3]{9x^2+27x+27}+\sqrt[3]{\left(9x^2+27x+27\right)^2}\right)}}{x^3}\)
\(=\lim\limits_{x\rightarrow0}\left(\frac{8}{\sqrt{8x^3+x^2+6x+9}+x+3}+\frac{1}{\left(x+3\right)^2+\left(x+3\sqrt[3]{9x^2+27x+27}+\sqrt[3]{\left(9x^2+27x+27\right)^2}\right)}\right)\)
\(=\frac{8}{3+3}+\frac{1}{9+3.3+\sqrt[3]{27^2}}=\frac{37}{27}\)
Lời giải:
a) ĐK: \(x>0; x\neq 25; x\neq 36\)
PT \(\Rightarrow (\sqrt{x}-2)(\sqrt{x}-6)=(\sqrt{x}-5)(\sqrt{x}-4)\)
\(\Leftrightarrow x-8\sqrt{x}+12=x-9\sqrt{x}+20\)
\(\Leftrightarrow \sqrt{x}=8\Rightarrow x=64\) (thỏa mãn)
Vậy.......
b)
ĐK: \(x\geq \frac{-1}{2}\)
PT \(\Leftrightarrow \sqrt{9(2x+1)}-\sqrt{4(2x+1)}+\frac{1}{3}\sqrt{2x+1}=4\)
\(\Leftrightarrow 3\sqrt{2x+1}-2\sqrt{2x+1}+\frac{1}{3}\sqrt{2x+1}=4\)
\(\Leftrightarrow \frac{4}{3}\sqrt{2x+1}=4\Leftrightarrow \sqrt{2x+1}=3\)
\(\Rightarrow x=\frac{3^2-1}{2}=4\) (thỏa mãn)
c)
ĐK: \(x\geq 2\)
PT \(\Leftrightarrow \sqrt{4(x-2)}-\frac{1}{2}\sqrt{x-2}+\sqrt{9(x-2)}=9\)
\(\Leftrightarrow 2\sqrt{x-2}-\frac{1}{2}\sqrt{x-2}+3\sqrt{x-2}=9\)
\(\Leftrightarrow \frac{9}{2}\sqrt{x-2}=9\Leftrightarrow \sqrt{x-2}=2\Rightarrow x=2^2+2=6\) (thỏa mãn)
ĐKXĐ: \(-3< x< 3\)
\(\Leftrightarrow\frac{\left(2x\right)^3}{\sqrt{9-x^2}}=9-x^2\Leftrightarrow\left(2x\right)^3=\left(9-x^2\right)\sqrt{9-x^2}\)
\(\Leftrightarrow\left(2x\right)^3=\left(\sqrt{9-x^2}\right)^3\Leftrightarrow2x=\sqrt{9-x^2}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\4x^2=9-x^2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\5x^2=9\end{matrix}\right.\) \(\Rightarrow x=\frac{3\sqrt{5}}{5}\)
Lời giải:
a) ĐK: $x\geq 2$
PT $\Leftrightarrow \sqrt{(x-2)(x+2)}-3\sqrt{x-2}=0$
$\Leftrightarrow \sqrt{x-2}(\sqrt{x+2}-3)=0$
\(\Rightarrow \left[\begin{matrix} \sqrt{x-2}=0\\ \sqrt{x+2}-3=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=2\\ x=7\end{matrix}\right.\) (thỏa mãn)
Vậy..........
b) ĐK: $x\geq 0$
PT $\Leftrightarrow (\sqrt{x}-3)^2=0$
$\Leftrightarrow \sqrt{x}-3=0$
$\Leftrightarrow x=9$ (thỏa mãn)
c) ĐK: $x\geq 3$
PT $\Leftrightarrow \sqrt{9(x-3)}+\sqrt{x-3}-\frac{1}{2}\sqrt{4(x-3)}=7$
$\Leftrightarrow 3\sqrt{x-3}+\sqrt{x-3}-\sqrt{x-3}=7$
$\Leftrightarrow 3\sqrt{x-3}=7$
$\Leftrightarrow x-3=(\frac{7}{3})^2$
$\Rightarrow x=\frac{76}{9}$
d)
ĐK: $x\geq \frac{-1}{2}$
PT $\Leftrightarrow 3\sqrt{4(2x+1)}-\frac{1}{3}\sqrt{9(2x+1)}-\frac{1}{2}\sqrt{25(2x+1)}+\sqrt{\frac{1}{4}(2x+1)}=6$
$\Leftrightarrow 6\sqrt{2x+1}-\sqrt{2x+1}-\frac{5}{2}\sqrt{2x+1}+\frac{1}{2}\sqrt{2x+1}=6$
$\Leftrightarrow 3\sqrt{2x+1}=6$
$\Leftrightarrow \sqrt{2x+1}=2$
$\Rightarrow x=\frac{3}{2}$ (thỏa mãn)
dk:...
\(pt\Leftrightarrow x^2\sqrt{9-x^2}+8x^3-9\sqrt{9-x^2}=0\)
\(\Leftrightarrow x^2\left(\sqrt{9-x^2}-2x\right)+9\left(2x-\sqrt{9-x^2}\right)+11x^3-18x=0\)
liên hợp....