Cho hình vuông tại D, tia phân giác của góc E cắt DF tại M, trên tia È lấy điểm N sao cho EN=ED. Chứng minh:
a) EDM = ENM
b) MN vông góc với EF
c) EM là đường trung trực của DN
Giups mình câu C với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔMED vuông tại E và ΔMIN vuôngtại I có
MD=MN
góc EMD=góc IMN
=>ΔMED=ΔMIN
b: ΔMED=ΔMIN
=>góc MDE=góc MNI=góc MDP
=>DP=NP
a, Xét tam giác DEM và tam giác NEM
Ta có: DE = NE
góc DEM = góc NEM
EM cạnh chung
Do đó : tam giác DEM = tam giác NEM
Suy ra: góc EDM = góc ENM
Mà góc EDM =90'
Suy ra: góc ENM = 90'
hay MN vuông góc EF
b, Xét tam giác DMK và tam giác NMF
Ta có: góc KDM = góc MNF =90'
DM = MN ( tam giác DEM = tam giác NEM)
góc DMK = góc NMF ( đối đỉnh)
Do đó: tam giác DMK = tam giác NMF
Hình tự túc, vẽ khó quá.
a) ACB^ = ECN^ (đđ)
Mà ACB^ = ABC^ (do \(\Delta\) ABC cân)
=> ABC^ = ECN^
Xét \(\Delta\)BDM và \(\Delta\)CEN :
BDM^ = CEN^ = 90o
BD = CE
ABC^ = CEN^
=> \(\Delta\)BDM = \(\Delta\)CEN (cạnh góc vuông_ góc nhọn)
=> DM = EN (2 cạnh tương ứng)
b) MD _|_ BC; NE_|_ BC => MD // NE
=> DMI^ = ENI^ (sole trong)
Xét \(\Delta\)DMI và \(\Delta\)ENI:
MDI^ = NEI^ = 90o
MD = EN (cmt)
DMI^ = ENI (cmt)
=> \(\Delta\)DMI và \(\Delta\)ENI (cạnh góc vuông_góc nhọn)
=> IM = IN (1)
Vì I là giao điểm của MN và BC nên I nằm trên MN (2)
Từ (1) và (2) => I là trung điểm của MN
c) Xét \(\Delta\)ABO và \(\Delta\)ACO:
AO chung
BAO^ = CAO^
AB = AC
=> \(\Delta\)ABO = \(\Delta\)ACO (c.g.c)
d) ko bt (cần thời gian suy nghĩ, và có thể bí luôn)
a)Vì tam giác abc cân ở a =>góc abc=góc acb.mà góc acb =góc ecn (đối đỉnh) =>góc abc=góc ecn.
Xét tam giác bmd và tam giác cne có :bd=ce; góc abc=góc ecn =>tam giác bmd =tam giác ecn(cạnh góc vuông và góc nhọn kề)
=>md=ne.
b)Vì dm và en cung vuông góc với bc =>dm song song với en=>góc dmc=góc enc(so le trong)
xét tam giác dim và tam giác ein có :góc dmc =góc enc;góc mid=góc nie(đối đỉnh);góc mdi=góc nei=90 độ=>tam giác dim=tam giác ein(g.g.g.)
=>di=ie=>i là trung điểm de
c)gọi h là giao của ao với bc.
ta có:xét tam giác abo bằng tam giác aco=>bo=co=>o thuộc trung trực của bc .tương tự a thuộc trung trực của bc=>ao là trung trực bc
a: Xét ΔEDM và ΔENM có
EM chung
\(\widehat{DEM}=\widehat{NEM}\)
ED=EN
Do đó: ΔEDM=ΔENM
b: Ta có: ΔEDM=ΔENM
nên \(\widehat{EDM}=\widehat{ENM}=90^0\)
c: Ta có: ED=EN
MD=MN
DO đó: EM là đường trung trực của DN
hay EM⊥DN
thanks ạ