K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2022

\(\Rightarrow A^3=5\sqrt{2}-7-3\sqrt[3]{5\sqrt{2}-7}^2.\sqrt[3]{5\sqrt{2}+7}+3\sqrt[3]{5\sqrt{2}-7}.\sqrt[3]{5\sqrt{2}+7}^2-5\sqrt{2}-7=-14-3.\sqrt[3]{\left(5\sqrt{2}-7\right)\left(5\sqrt{2}+7\right)}\left[\sqrt[3]{5\sqrt{2}-7}-\sqrt[3]{5\sqrt{2}+7}\right]=-14-3\sqrt[3]{1}.A=-14-3A\)

\(\Rightarrow A^3=-14-3A\Leftrightarrow A^3+3A+14=0\Leftrightarrow\left(A+2\right)\left(A^2-2A+7\right)=0\Leftrightarrow\left[{}\begin{matrix}A=-2\\A^2-2A+7>0\left(loại\right)\end{matrix}\right.\)

14 tháng 8 2020

Đặt:    \(B=\sqrt{7+\sqrt{5}}+\sqrt{7-\sqrt{5}}\)

=>    \(B^2=7+\sqrt{5}+7-\sqrt{5}+2\sqrt{\left(7+\sqrt{5}\right)\left(7-\sqrt{5}\right)}\)

=>   \(B^2=14+2\sqrt{49-5}\)

=>   \(B^2=14+2\sqrt{44}\)

=>   \(A=\frac{\sqrt{14+4\sqrt{11}}}{7+2\sqrt{11}}-\sqrt{\left(\sqrt{2}-1\right)^2}\)

=>   \(A=\sqrt{\frac{2}{7+2\sqrt{11}}}-\left(\sqrt{2}-1\right)\)

=>   \(A=\sqrt{\frac{2}{7+2\sqrt{11}}}-\sqrt{2}+1\)

ĐỀ BÀI CHẮC SAI RỒI PHẢI DƯỚI MẪU PHẢI LÀ    \(\sqrt{7+2\sqrt{11}}\)    THÌ LÚC ĐÓ BIỂU THỨC A RA ĐẸP HƠN !!!!

NẾU SỬA ĐỀ BÀI NHƯ TRÊN:

=>    \(A=\frac{\sqrt{2}.\sqrt{7+2\sqrt{11}}}{\sqrt{7+2\sqrt{11}}}-\left(\sqrt{2}-1\right)\)

=>   \(A=\sqrt{2}-\sqrt{2}+1\)

=>   \(A=1\)

ĐÓ BÂY GIỜ RA A  = 1 RẤT ĐẸP

31 tháng 8 2021

\(A=3\sqrt{2}+5\sqrt{8}-2\sqrt{50}\)

\(=3\sqrt{2}+10\sqrt{2}-10\sqrt{2}\)

\(=3\sqrt{2}\)

31 tháng 8 2021

\(B=\dfrac{1}{3+\sqrt{5}}+\dfrac{1}{3-\sqrt{5}}\)

\(=\dfrac{3-\sqrt{5}}{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}+\dfrac{3+\sqrt{5}}{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}\)

\(=\dfrac{3-\sqrt{5}+3+\sqrt{5}}{9-5}\)

\(=\dfrac{3}{2}\)

31 tháng 10 2021

a) \(\Leftrightarrow A=3\sqrt{2}+10\sqrt{2}-10\sqrt{2}=3\sqrt{2}\)

b) \(\Leftrightarrow B=\sqrt{7-2\sqrt{12}}+\sqrt{12+2\sqrt{27}}=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(3+\sqrt{3}\right)^2}=2-\sqrt{3}+3+\sqrt{3}=5\)

c) \(\Leftrightarrow C=\dfrac{3-\sqrt{5}+3+\sqrt{5}}{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}=\dfrac{6}{4}=\dfrac{3}{2}\)

d) \(\Leftrightarrow D=3-\left(-2\right)-5=0\)

26 tháng 7 2015

\(A=\frac{\sqrt{3}+\sqrt{11+6\sqrt{2}}-\sqrt{5+2\sqrt{6}}}{\sqrt{2}+\sqrt{6+2\sqrt{5}}-\sqrt{7+2\sqrt{10}}}=\frac{\sqrt{3}+\sqrt{9+2.3\sqrt{3}+2}-\sqrt{3+2\sqrt{3}\sqrt{2}+2}}{\sqrt{2}+\sqrt{5+2\sqrt{5}.1+1}-\sqrt{5+2\sqrt{5}\sqrt{2}+2}}\)

\(=\frac{\sqrt{3}+\sqrt{\left(3+\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}}{\sqrt{2}+\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}}=\frac{\sqrt{3}+3+\sqrt{2}-\sqrt{3}-\sqrt{2}}{\sqrt{2}+\sqrt{5}+1-\sqrt{5}-\sqrt{2}}\)

\(=\frac{3}{1}=3\)

26 tháng 7 2015

A=\(\frac{\sqrt{3}+3+\sqrt{2}-\sqrt{2}-\sqrt{3}}{\sqrt{2}+1+\sqrt{5}-\sqrt{2}-\sqrt{5}}=\frac{3}{1}=3\)

a) \(\dfrac{1}{2}\sqrt{20}+5=\dfrac{1}{2}\cdot2\sqrt{5}+5=5+\sqrt{5}\)

b) \(\sqrt{16}+\sqrt{64}=4+8=12\)

c) \(\sqrt{20}-\sqrt{45}+3\sqrt{18}=2\sqrt{5}-3\sqrt{5}+9\sqrt{2}=9\sqrt{2}-\sqrt{5}\)

d) \(\sqrt{\left(2-\sqrt{2}\right)^2}+\sqrt{2}=2-\sqrt{2}+\sqrt{2}=2\)

6 tháng 7 2021

a, Ta có : \(A=\sqrt{2-\sqrt{3}}-\sqrt{2+\sqrt{3}}\)

\(\Rightarrow A^2=2-\sqrt{3}+2+\sqrt{3}-2\sqrt{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}\)

\(=4-2\sqrt{4-3}=4-2=2\)

\(\Rightarrow A=-\sqrt{2}\)

b, Ta có : \(B=\sqrt{3+\sqrt{5}}+\sqrt{7-3\sqrt{5}}-\sqrt{2}\)

\(\Rightarrow B\sqrt{2}=\sqrt{6+2\sqrt{5}}+\sqrt{14-6\sqrt{5}}-2\)

\(=\sqrt{5+2\sqrt{5}+1}+\sqrt{9-2.3\sqrt{5}+5}-2\)

\(=\sqrt{5}+1+3-\sqrt{5}-2=2\)

\(\Rightarrow B=\sqrt{2}\)


 

 

24 tháng 6 2021

a)\(A=\sqrt[3]{5\sqrt{2}+7}-\sqrt[3]{5\sqrt{2}-7}\)

\(=\sqrt[3]{1+3\sqrt{2}+3\sqrt{2^2}+2\sqrt{2}}-\sqrt[3]{2\sqrt{2}-3\sqrt{2^2}+3\sqrt{2}-1}\)

\(=\sqrt[3]{\left(1+\sqrt{2}\right)^3}-\sqrt[.3]{\left(\sqrt{2}-1\right)^3}\)

\(=1+\sqrt{2}-\left(\sqrt{2}-1\right)=2\)

b)\(B=\sqrt[3]{5+2\sqrt{13}}+\sqrt[3]{5-2\sqrt{13}}\)

\(\Leftrightarrow B^3=5+2\sqrt{13}+3\sqrt[3]{\left(5+2\sqrt{13}\right)\left(5-2\sqrt{13}\right)}\left(\sqrt[3]{5+2\sqrt{13}}+\sqrt[3]{5+2\sqrt{13}}\right)+5-2\sqrt{13}\)

\(\Leftrightarrow B^3=10+3.\sqrt[3]{-27}.B\)

\(\Leftrightarrow B^3+9B-10=0\)

\(\Leftrightarrow\left(B-1\right)\left(B^2+B+10\right)=0\)

\(\Leftrightarrow B=1\) (vì \(B^2+B+10>0\))

c)\(C=\sqrt[3]{\sqrt{5}+2}-\sqrt[3]{\sqrt{5}-2}\)

\(\Leftrightarrow2C=\sqrt[3]{8\sqrt{5}+16}-\sqrt[3]{8\sqrt{5}-16}=\sqrt[3]{1+3\sqrt{5}+3\sqrt{5^2}+5\sqrt{5}}-\sqrt[3]{5\sqrt{5}-3\sqrt{5^2}+3\sqrt{5}-1}\)

\(=\sqrt[3]{\left(1+\sqrt{5}\right)^3}-\sqrt[3]{\left(\sqrt{5}-1\right)^3}\)

\(=1+\sqrt{5}-\left(\sqrt{5}-1\right)\)

\(\Rightarrow C=1\)

d) \(D=\dfrac{10}{\sqrt[3]{9}-\sqrt[3]{6}+\sqrt[3]{4}}\left(\dfrac{1+\sqrt{2}}{\sqrt{4-2\sqrt{3}}}:\dfrac{\sqrt{3}+1}{\sqrt{2}-1}\right)\)

\(=\dfrac{10\left(\sqrt[3]{3}+\sqrt[3]{2}\right)}{\left(\sqrt[3]{3}+\sqrt[3]{2}\right)\left(\sqrt[3]{9^2}-\sqrt[3]{6}+\sqrt[3]{2^2}\right)}\left(\dfrac{1+\sqrt{2}}{\sqrt{\left(1-\sqrt{3}\right)^2}}.\dfrac{\sqrt{2}-1}{\sqrt{3}+1}\right)\)

\(=\dfrac{10\left(\sqrt[3]{3}+\sqrt[3]{2}\right)}{5}.\dfrac{1+\sqrt{2}}{\left|1-\sqrt{3}\right|}.\dfrac{\sqrt{2}-1}{\sqrt{3}+1}\)

\(=2\left(\sqrt[3]{3}+\sqrt[3]{2}\right).\dfrac{\left(1+\sqrt{2}\right)\left(\sqrt{2}-1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}\)

\(=2\left(\sqrt[3]{3}+\sqrt[3]{2}\right).\dfrac{\left(\sqrt{2}\right)^2-1}{\left(\sqrt{3}\right)^2-1}\)

\(=\sqrt[3]{3}+\sqrt[3]{2}\)

Vậy...

24 tháng 6 2021

Khiếp CTV kìa sợ quá ;-;

a: Sửa đề: \(\dfrac{\sqrt{7-4\sqrt{3}}}{\sqrt{3}-2}\)

\(=\dfrac{\sqrt{\left(2-\sqrt{3}\right)^2}}{\sqrt{3}-2}=\dfrac{2-\sqrt{3}}{\sqrt{3}-2}\)

=-1

b: Sửa đề: \(\dfrac{\sqrt{5-2\sqrt{6}}}{\sqrt{3}-\sqrt{2}}\)

\(=\dfrac{\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}}{\sqrt{3}-\sqrt{2}}=\dfrac{\sqrt{3}-\sqrt{2}}{\sqrt{3}-\sqrt{2}}\)

=1

a) \(M=\sqrt[3]{7+5\sqrt{2}}\)

Ta có:

Vì \(7+5\sqrt{2}=\left(\sqrt{2}\right)^3+1+3\sqrt{2}.1\left(\sqrt{2}+1\right)=\left(\sqrt{2}+1\right)^3\)

Nên \(M=\sqrt[3]{\left(\sqrt{2}+1\right)^3}=\sqrt{2}+1\)

b) \(N=\sqrt[3]{6\sqrt{3}-10}\)

Ta có:

Vì \(6\sqrt{3}-10=\left(\sqrt{3}\right)^3-1^3-3\sqrt{3}.1\left(\sqrt{3}-1\right)=\left(\sqrt{3}-1\right)^3\)

Nên \(N=\sqrt[3]{\left(\sqrt{3}-1\right)^3=\sqrt{3}-1}\)