Tìm số tự nhiên n , biết :
3n - 5 chia hết cho n+1
làm đầy đủ kết quả và giải thích ngắn gọn giúp mik nha!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow2n+3\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{-1;-2;1;-4\right\}\)
Lời giải:
$3n+7\vdots 2n+3$
$\Rightarrow 2(3n+7)\vdots 2n+3$
$\Rightarrow 6n+14\vdots 2n+3$
$\Rightarrow 3(2n+3)+5\vdots 2n+3$
$\Rightarrow 5\vdots 2n+3$
$\Rightarrow 2n+3\in\left\{1; -1; 5; -5\right\}$
$\Rightarrow n\in\left\{-1; -2; 1; -4\right\}$
Thử lại thấy thỏa mãn. Vậy........
a) n+13 chia hết cho n-5
=> n-5+5+13 chia hết cho n-5
=> n-5+18 chia hết cho n-5
=> n-5 chia hết cho n-5
=> 18 chia hết cho n-5
=> n-5 thuộc Ư(18)={1;2;3;6;9;18;-1;-2;-3;-6;-9;-18}
=> n thuộc {6;7;8;11;14;23;4;3;2;-1;-4;-13}
mà n là số tự nhiên và n<5 nên n thuộc { 2;3;4}
b) 15-2n chia hết cho n+1
=> 15-n+1+n+1-2 chia hết cho n+1
=> n+1+n+1+17 chia hết cho n+1
=> n+1 chia hết cho n+1
=> 17 chia hết cho n+1
=> n+1 thuộc Ư(17)={1;17;-1;-17}
=> n thuộc {0;16;-2;-18}
mà n là số tự nhiên và 2<,= 7 nên n=0
c) 6n+9 chia hết cho n-1
=> n-1+n-1+n-1+n-1+n-1+n-1+9+6 chia hết cho n-1
=> n-1+n-1+n-1+n-1+n-1+n-1+15 chia hết cho n-1
=> n-1 chia hết cho n-1
=> 15 chia hết cho n-1
=> n-1 thuộc Ư(15)={1;3;5;15;-1;-3;-5;-15}
=> n thuộc {2;4;6;16;0;-2;-4;-14}
mả n là số tự nhiên và n>,=1 nên n thuộc {2;4;6;16}
a) n+13 chia hết cho n-5
=> n-5+5+13 chia hết cho n-5
=> n-5+18 chia hết cho n-5
=> n-5 chia hết cho n-5
=> 18 chia hết cho n-5
=> n-5 thuộc Ư(18)={1;2;3;6;9;18;-1;-2;-3;-6;-9;-18}
=> n thuộc {6;7;8;11;14;23;4;3;2;-1;-4;-13}
mà n là số tự nhiên và n<5 nên n thuộc { 2;3;4}
b) 15-2n chia hết cho n+1
=> 15-n+1+n+1-2 chia hết cho n+1
=> n+1+n+1+17 chia hết cho n+1
=> n+1 chia hết cho n+1
=> 17 chia hết cho n+1
=> n+1 thuộc Ư(17)={1;17;-1;-17}
=> n thuộc {0;16;-2;-18}
mà n là số tự nhiên và 2<,= 7 nên n=0
c) 6n+9 chia hết cho n-1
=> n-1+n-1+n-1+n-1+n-1+n-1+9+6 chia hết cho n-1
=> n-1+n-1+n-1+n-1+n-1+n-1+15 chia hết cho n-1
=> n-1 chia hết cho n-1
=> 15 chia hết cho n-1
=> n-1 thuộc Ư(15)={1;3;5;15;-1;-3;-5;-15}
=> n thuộc {2;4;6;16;0;-2;-4;-14}
mả n là số tự nhiên và n>,=1 nên n thuộc {2;4;6;16}
a) \(\frac{7n+8}{n}=\frac{7n}{n}+\frac{8}{n}=7+\frac{8}{n}\)
\(\Rightarrow n\in\text{Ư}\left(8\right)=\left\{1;2;4;8\right\}\)
b) \(\frac{35-12n}{n}=\frac{35}{n}-\frac{12n}{n}=\frac{35}{n}-12\)
\(\Rightarrow n\in\text{Ư}\left(35\right)=\left\{1;3;5;7;35\right\}\)
Loại \(n\in\left\{1;3\right\}\) vì n > 3.
Vậy: \(n\in\left\{5;7;35\right\}\)
c) \(\frac{n+8}{n+3}=\frac{n+3+5}{n+3}=\frac{n+3}{n+3}+\frac{5}{n+3}=1+\frac{5}{n+3}\)
\(\Rightarrow n+3\in\text{Ư}\left(5\right)=\left\{1;5\right\}\)
\(\Rightarrow n+3=1\Rightarrow n=1-3=-2\) (loại vì -2 < 0)
\(\Rightarrow n+3=5\Rightarrow n=2\)
Vậy: n = 2
giải đầy đủ ba câu nhưng không yêu cầu chi tiết
a. n phải chia hết cho n rồi cãi sao đuọc
7 n càng chia hết cho n
vậy 8 phải chia hết cho n
n=(1.2.4.8)
b. ồ n<3 thì còn mỗi 1.2 n=1 hiển nhiên rồi, n=2 ko cần tử biết loại
vậy n=1 (người ra câu nàylãng xẹt)
c. (n+8)/(n+3) ko có dấu chia hết tạm dùng (...) là dấu chia hết
(n+3) (...) (n+3) hiển nhiên
(n+8) (...) (n+3)
=>[n+8-(n+3)] (...)(n+3)
5(...)(n+3)
vậy n+3=(1,5)
n=(2)
1)
Ta có 5n-1=5n+10-11=5(n+2)-11
Vì 5(n+2) chia hết cho (n+2)
Để [5(n+2)-11] chia hết cho (n+2)<=>11 chia hết cho (n+2)<=>(n+2) thuộc Ư(11)
Ta có Ư(11)={1;11;-1;-11}
Ta có bảng giá trị sau
(n+2) | -11 | -1 | 1 | 11 |
n | -13 | -3 | -1 | 9 |
Vậy n thuộc{-13;-3;-1;9} thì 5n-1 chia hết cho n+2
3)3n chia hết cho n-1
Ta có 3n=3n-3+3=3(n-1)+3
Vì 3(n-1) chia hết cho (n-1)
Để [3(n-1)+3] chia hết cho (n-1)<=>3 chia hết cho (n-1)
<=>(n-1) thuộc Ư(3)
Ư(3)={1;3;-1;-3}
Ta có bảng giá trị sau
n-1 | -3 | -1 | 1 | 3 |
n | -2 | 0 | 2 | 4 |
Vậy n thuộc{-2;0;2;4} thì 3n chia hết cho n-1
Câu 2 mình k bt nha
Ta có: 3n+5⋮n+1.
(3n+3)+2⋮n+1.
3(n+1)+2⋮n+1.
mà 3(n+1)⋮n+1
⇒2⋮n+1⇒n+1∈U(2)={±1;±2}.
Ta lập bảng xét giá trị
n+1 | -1 | 1 | -2 | 2 |
n | -2 | 0 | -3 | 1 |
Vì 3n-5:hết cho n+1mà n+1 : hết cho n+1 =≫3.(n+1)
TC : 3n-5 -[3.(n+1)]:hết cho n+1
3n-5 -(3n+3) :hết cho n+1
3n- 5 - 3n-3:hết cho n+1
2:hết cho n+1 =≫n+1 thuôc Ư(2)={1;2}
thay n+1lần lượt= 1;2 là ban sẽ ra
n + 2 chia hết cho n - 1
Ta có : n + 2 = ( n - 1 ) + 3 chia hết cho n -1
vì n-1 chia hết cho n-1
=> để ( n - 1 ) + 3 chia hết cho n - 1 => 3 chia hết cho n - 1
=> n - 1 thuộc tập hợp Ư( 3 )
=> n - 1 = 1;3
=> n = 2;4
n2+5 chia hết cho n+1
n2+n-n+5 chia hết cho n+1
n(n+1)-n-1+6 chia hết cho n+1
n(n+1)-(n+1)+6 chia hết cho n+1
(n-1)(n+6)+6 chia hết cho n+1
=>6 chia hết cho n+1 hay n+1EƯ(6)={1;2;3;6}
=>nE{0;1;2;5}
Vậy nE{0;1;2;5}
\(\frac{3n-5}{n+1}=\frac{3\left(n+1\right)-8}{n+1}\)
Để 3n - 5 chia hết cho n + 1 thì 8 phải chia hết cho n +1 hay n + 1 phải là ước của 8 mà n là số tự nhiên nên n>=0 => n+1>=1
=> n + 1 = {1; 2; 4; 8} => n={0; 3; 5; 9}
8 ở đâu ra vậy bạn