K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2016

Áp dụng Bđt \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)ta có:

\(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge\frac{9}{1+a+1+b+1+c}\)\(=\frac{9}{4}\ne2\)

???

26 tháng 10 2018

Ta có: b + c = (b + c).(a + b + c)^2 (vì a + b + c = 1)
Ta có [ (a + b) + c ]^2 >= 4(a + b)c (vì (x + y)^2 >= 4xy )
<=> (b + c).(a + b + c)^2 >= 4(a + b)^2.c
lại có (a + b)^2 >= 4ab => 4(a + b)^2.c >= 16abc (đpcm)
bạn tự tìm dấu '=' nha

12 tháng 8 2018

    \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

\(\Rightarrow\frac{bc+ac+ab}{abc}=\frac{1}{a+b+c}\)

\(\Rightarrow\left(ab+ac+bc\right)\left(a+b+c\right)=abc\)

\(\Rightarrow a^2b+ab^2+a^2c+ac^2+b^2c+bc^2+3abc=âbc\)

\(\Rightarrow\left(a^2b+ab^2\right)+\left(ac^2+bc^2\right)+\left(a^2c+2abc+b^2c\right)=0\)

\(\Rightarrow ab\left(a+b\right)+c^2\left(a+b\right)+c\left(a+b\right)^2=0\)

\(\Rightarrow ab\left(a+b\right)+c^2\left(a+b\right)+\left(ac+bc\right)\left(a+b\right)=0\)

\(\Rightarrow\left(a+b\right)\left(ab+c^2+ac+bc\right)=0\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)

\(\Rightarrow\orbr{\begin{cases}a=-b\\\frac{b=-c}{a=-c}\end{cases}}\)

Từ đó: P = 0.

Mình giải hơi tắt. Mong bạn hiểu bài.

Chúc bạn học tốt.

1 tháng 10 2017

Đặt P = 1/a³(b + c) + 1/b³(a + c) +1/c³(a + b) 

= bc/a²(b + c) + ac/b²(a + c) + ab/c²(a + b) ------- (do abc = 1) 

= 1 / a²[(1/c) + (1/b)] + 1 / b²[(1/c) + (1/a)] + 1 / c²[(1/b) + (1/a)] 

= (1/a²) / [(1/c) + (1/b)] + (1/b²) / [(1/c) + (1/a)] + (1/c²) / [(1/b) + (1/a)] 

Đặt 1/a = x, 1/b = y, 1/c = z thì xyz = 1 

Và khi đó: 

P = x²/(y + z) + y²/(z + x) + z²/(x + y) 

Sử dụng BĐT Cauchy: 

♠ x²/(y + z) + (y + z)/4 ≥ x 

♠ y²/(z + x) + (z + x)/4 ≥ y 

♠ z²/(x + y) + (x + y)/4 ≥ z 

Cộng vế 3 BĐT trên ta được 

P + (x + y + z)/2 ≥ x + y + z 

Hay: 

P ≥ (x + y + z)/2 

Lại theo Cauchy thì x + y + z ≥ 3.³√(xyz) = 3 

Nên P ≥ 3/2 (và ta được đpcm)   

1 tháng 10 2017

https://olm.vn/hoi-dap/question/1036432.html

vào đây xem nhé,cách ngắn hơn

10 tháng 12 2017

1/c = 1/2(1/a+1/b)   ( a,b,c khác 0 )

=> 1/a +1/b = 2/c => 1/a + 1/b - 2/c = 0

có nghĩa là : bc/abc + ac/abc - 2ab/abc =0     

=> bc+ac-2ab = 0

bc - ab + ac - ab = 0

b(c-a) + a(c-b) = 0

=> a(c-b) = b(a-c)

=>a/b = (a-c)/(c-b)    ( vì b khác 0 ; b khác c nên c-b khác 0 )

Vậy a/b = (a-c)/(c-b) 

10 tháng 12 2017

M là trung điểm của AC => AM = MC = AC/2

gọi ME // AC => góc BME = góc MAN ( vì là 2 góc đồng vị )

Vì MN // BC => góc MBE = góc AMN ( vì là 2 góc đồng vị )

Xét tam giác MBE và tam giác AMN có : AM = MC 

                                                                góc BME = góc MAN

                                                               góc MBE = góc AMN

=> tam giác MBE = tam giác AMN ( g.c.g )

=> ME = AN ( là 2 cạnh tương ứng )                 (1)

nối N với E

ME // AC => góc MEN = góc ENC ( vì là 2 góc so le trong )

MN // BC => góc MNE = góc NEC ( vì là 2 góc so le trong )

Xét tam giác MEN và tam giác CNE có : NE là cạnh chung 

                                                                góc MEN = góc ENC

                                                                góc MNE = góc NEC 

=> tam giác MEN = tam giác CNE ( g.c.g)

=> ME = NC ( vì là 2 cạnh tương ứng )                   ( 2 )

Từ (1) và (2) => AN=ME=NC 

                   hay  AN = NC ( ĐPCM )

\(x\left(x+7\right)=0\)

\(x=0;-7\)

từ từ gửi hết cho 

\(\left(x+12\right)\left(x-3\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+12=0\\x-3=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-12\\x=3\end{cases}}}\)

\(\left(-x+5\right)\left(3-x\right)\)thiếu nha bn 

6 tháng 1 2019

trong gang:nFe =3/350

BT ng tu ngto:2nFe2O3+3nFe3O4=3/350

=>2*0.6*m1/160+3*0.696*m2/232=3/350

m1+m2=1

=>m1=2/7;m2=5/7

=>m1:m2=2/5