K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2018

Ta có: a+c = 2b

      mà 2b.d= c(b+d)

     =>  (a+c).d=c(b+d)

     => ad +cd = bc+cd

     => ad =bc

     =>\(\frac{a}{b}=\frac{c}{d}\)

17 tháng 9 2018

Thay 2b vào đẳng thức bên dưới ta có :

( a + c )d = c( b + d )

\(\Rightarrow\frac{c}{d}=\frac{a+c}{b+d}=\frac{a}{d}=\frac{c}{d}\)( tính chất của dãy t/s bằng nhau ) 

=> đpcm

27 tháng 7 2016

Đặt a +c vào 2bd ta có

(a + c)d = c(b + d)

=> ad + cd = cb + cd

=> ad = cb

=> \(\frac{a}{b}=\frac{c}{d}\)

27 tháng 7 2016

Đặt a +c vào 2bd ta có

(a + c)d = c(b + d)

=> ad + cd = cb + cd

=> ad = cb

\(\Rightarrow\frac{a}{b}=\frac{c}{d}\)

5 tháng 1 2018

a + c = 2b

( a + c ) . d = 2bd

Mà 2bd = c . ( b + d )

\(\Rightarrow\)( a + c ) . d = c . ( b + d )

\(\Rightarrow\)ad + cd = bc + cd

\(\Rightarrow\)ad = bc

\(\Rightarrow\)\(\frac{a}{b}=\frac{c}{d}\)( đpcm )

29 tháng 12 2019

giải

Ta có : \(\hept{\begin{cases}2bd=c\left(b+d\right)\\a+c=2b\end{cases}}\)

\(\Rightarrow d\left(a+c\right)=c.\left(b+d\right)\)

\(\Rightarrow\frac{c}{d}=\frac{a+c}{b+d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có : 

\(\frac{c}{d}=\frac{a+c}{b+d}=\frac{a+c-c}{b+d-d}=\frac{a}{b}\)

\(\Rightarrow\frac{a}{b}=\frac{c}{d}\left(đpcm\right)\) 

Chúc bạn hoc tốt !!!

30 tháng 1 2017

a + c  =2b ( 1 )

2bd = c(b+d) ( 2)

từ (1) và (2) ta được:

( a+ c ) .d = c.( b + d )

theo tính chất phân phối ta có"

ad + cd = cb + cd

=> ad = cb => a/b = c/d

k mknhes

9 tháng 10 2015

Ta có: 2bd=c.(b+d)

Mà a+c=2b

=>d.(a+c)=c.(b+d)

=>\(\frac{c}{d}=\frac{a+c}{b+d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{c}{d}=\frac{a+c}{b+d}=\frac{a+c-c}{b+d-d}=\frac{a}{b}\)

\(=>\frac{a}{b}=\frac{c}{d}\)

26 tháng 12 2017

hau ak

19 tháng 6 2019

Ta có: a + c = 2b

=> d(a + c) = 2bd

mà c(b + d) = 2bd

=> d(a + c) = c(b + d)

=> ad + cd = bc + cd

=> ad = bc

=> \(\frac{a}{b}=\frac{c}{d}\)

19 tháng 6 2019

Ta có: 2bd = c(b + d)

Mà: a + c = 2b

=> (a + c)d = c(b + d)

=> ad + cd = cb + cd

=> ab = cd

\(\Rightarrow\frac{a}{b}=\frac{c}{d}\) (đpcm0