Tính: 2x^5-5y^3+2017 tại x, y thỏa mãn: giá trị tuyệt đối của( x-1) +(y+2)^2016=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
kho....................wa..................troi.......................thi.....................ret.................lanh................wa..................tich............................ung.........................ho..............minh......................cho....................do....................lanh
Ta có: 5x2+5y2+8xy-2x+2y+2=0
=> 4x2+8xy+4y2+x2-2x+1+y2+2y+1=0
=> (2x+2y)2+(x-1)2+(y+1)2=0
=> {2x+2y=0 => x=-y
{x-1 = 0 => x=1
{y+1 =0 => y=-1
=> x=1, y=-1
Thay vào biểu thức M, ta có:
M=(1+-1)2015+(1-2)2016+(-1+1)2017=0+1+0=1 (đpcm)
Cho hai x,y thỏa mãn: (x-2)2016+ số đối của y+1 = 0
tính giá trị của biểu thức A=2x2y2016-3(x+y)2017
Cho hai x,y thỏa mãn: (x-2)2016+ số đối của y+1 = 0
tính giá trị của biểu thức A=2x2y2016-3(x+y)2017
ta có : (x-2)^2016 - (y+1)=0
mà (x-2)^2016>=0 với mọi x ϵ R
nên biểu thức có GT bằng 0
.<=> x-2=0 và y+1= 0
=>x=2 ,y=-1
Thay x=2 , y=-1 vào biểu thức A ta được :
A= 2.2^2.(-1)^2016 - 3.(2-1)^2017
= 8.2016 - 3.2017
=16128 - 6051
= 10077
Vậy giá trị của A là 10077
b: 5x^2+5y^2+8xy-2x+2y+2=0
=>4x^2+8xy+4y^2+x^2-2x+1+y^2+2y+1=0
=>(x-1)^2+(y+1)^2+(2x+2y)^2=0
=>x=1 và y=-1
M=(1-1)^2015+(1-2)^2016+(-1+1)^2017=1
\(\left|x-1\right|+\left(y+2\right)^{2016}=0\)
Ta thấy: \(\hept{\begin{cases}\left|x-1\right|\ge0\\\left(y+2\right)^{2016}\ge0\end{cases}}\)
\(\Rightarrow\left|x-1\right|+\left(y+2\right)^{2016}\ge0\)
\(\Rightarrow\hept{\begin{cases}\left|x-1\right|=0\\\left(y+2\right)^{2016}=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\)
\(\Rightarrow A=2x^5-5y^3+2017=2\cdot1^5-5\cdot\left(-2\right)^3+2017=2059\)
Ta có: 5x2 + 5y2 + 8xy - 2x + 2y = 0
\(\Leftrightarrow\)(4x2 + 4y2 + 8xy) + (x2 - 2x + 1) + (y2 + 2y + 1) = 0
\(\Leftrightarrow\)(2x + 2y)2 + (x - 1)2 + (y + 1) = 0
\(\Leftrightarrow\)\(\hept{\begin{cases}2x+2y=0\\x-1=0\\y+1=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=1\\y=-1\end{cases}}\)
Thay vào pt ta đc:
M = (x + y)2015 + (x - 2)2016 + (y + 1)2017
= (1 - 1)2015 + (1 - 2)2016 + (-1 + 1)2017 = 1
\(5x^2+5y^2+8xy-2x+2y+2=0\)
\(\Leftrightarrow\left(4x^2+8xy+4y^2\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\)
\(\Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)
Ta thấy \(VT\ge VP\forall x;y\) để đấu "=" xảy ra \(\Leftrightarrow x=1;y=-1\) thay vào M :
\(M=\left(-1+1\right)^{2015}+\left(1-2\right)^{2016}+\left(-1+1\right)^{2017}=1\)