K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 4 2021

a/ Pt có 2 nghiệm phân biệt

\(\to\Delta'=(-m)^2-1.(-8m-16)=m^2+8m+16=(m+4)^2>0\\\to m+4>0\quad or\quad m+4<0\\\to m>-4\quad or\quad m<-4\)

b/ Theo Vi-ét:

\(\begin{cases}x_1+x_2=2m\\x_1x_2=-8m-16\end{cases}\)

\(x_1^2+x_2^2=5\\\leftrightarrow x_1^2+2x_1x_2+x_2^2-2x_1x_2=5\\\leftrightarrow (x_1+x_2)^2-2x_1x_2=5\\\leftrightarrow (2m)^2-2.(-8m-16)=5\\\leftrightarrow 4m^2+16m+32=5\\\leftrightarrow 4(m^2+4m+8)=5\\\leftrightarrow 4(m+2)^2+16=5\\\leftrightarrow 4(m+2)^2+11=0(\text{vô lý})\\\to m\in\varnothing\)

Vậy không có giá trị m thỏa mãn

AH
Akai Haruma
Giáo viên
17 tháng 7 2021

Lời giải:

b. Tam giác $ABC$ vuông tại $A$ và $C=45^0$ nên:

 $B=90^0-C=90^0-45^0=45^0$

Do đó, tam giác $ABC$ vuông cân tại $A$

$\Rightarrow AC=AB=50$ (cm)

Áp dụng định lý Pitago: $BC=\sqrt{AB^2+AC^2}=\sqrt{50^2+50^2}=50\sqrt{2}$ (cm)

f.

Theo định lý Pitago: $AC=\sqrt{BC^2-AB^2}=\sqrt{7^2-5^2}=2\sqrt{6}$ (cm)

$\sin B=\frac{AC}{BC}=\frac{2\sqrt{6}}{7}$

$\Rightarrow B=44,42^0$

$C=90^0-B=90^0-44,42^0=45,58^0$

b) Xét ΔABC vuông tại A có \(\widehat{C}=45^0\)(gt)

nên ΔABC vuông cân tại A(Định nghĩa tam giác vuông cân)

Suy ra: \(\widehat{B}=45^0\) và AC=50(cm)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=50^2+50^2=5000\)

hay \(BC=50\sqrt{2}\left(cm\right)\)

b: AD là phân giác

=>DB/AB=DC/AC

=>DB/DC=AB/AC=3/4

=>DB/3=DC/4

mà DB+DC=BC=14

nên DB/3=DC/4=14/7=2

=>DB=6cm; DC=8cm

b: ΔOAH cân tại O(Do A,H cùng nằm trên (O))

mà OD là đường cao

nên OD là phân giác của góc AOH

Xét ΔOAD và ΔOHD có

OA=OH

góc AOD=góc HOD

OD chung

Do đó: ΔOAD=ΔOHD

=>góc OHD=góc OAD=90 độ

=>DH vuông góc OH

28 tháng 8 2023

thanks

 

 

 

23 tháng 10 2021

\(b,N=\left(2x-1\right)^2-4\ge-4\\ N_{min}=-4\Leftrightarrow x=\dfrac{1}{2}\\ c,P=\left(2x-5\right)^2+6\left(2x-5\right)+9-4\\ P=\left(2x-5+3\right)^2-4=\left(2x-2\right)^2-4\ge-4\\ P_{min}=-4\Leftrightarrow x=1\\ d,Q=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+1\\ Q=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1\\ Q_{min}=1\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
23 tháng 10 2021

6a.

$M=x^2-x+1=(x^2-x+\frac{1}{4})+\frac{3}{4}$

$=(x-\frac{1}{2})^2+\frac{3}{4}\geq \frac{3}{4}$

Vậy $M_{\min}=\frac{3}{4}$ khi $x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}$

Câu 1: D

Câu 2: C

Câu 3: C

Câu 4: D

Câu 5: A

14 tháng 5 2022

 1: D

 2: C

 3: C

 4: D

 5: A