K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2016

Ta có \(2x^2+\frac{1}{x^2}+\frac{y^2}{4}=4\)

\(\Leftrightarrow8x^4+x^2y^2-16x^2+4=0\)

\(\Leftrightarrow8x^4-16x^2+4+A^2=0\)

Để pt có nghiệm thì ∆'\(\ge0\)

\(\Leftrightarrow8^2-8\left(4+A^2\right)\ge0\)

\(\Leftrightarrow A^2\le4\)

\(\Leftrightarrow-2\le A\le2\)

Vậy GTLN là 2 đạt được khi (x, y) = (1, 2; -1, -2)

GTNN là - 2 đạt được khi (x, y) = (1, - 2; - 1, 2)

21 tháng 10 2016

Giờ làm biếng làm quá. Trưa mai t giải cho

tích mình với

ai tích mình

mình tích lại

thanks

14 tháng 2 2019

Tích mình đi mình tích lại

18 tháng 12 2016

Ý tưởng: Đặt \(xy=\frac{1}{k}\) hay \(y=\frac{1}{kx}\).

Ta có \(2x^2+\frac{1}{x^2}+\frac{4}{y^2}=4\Rightarrow2x^2+\frac{1}{x^2}+4k^2x^2=4\)

Suy ra \(\left(4k^2+2\right)x^4-4x^2+1=0\) 

Đặt \(X=x^2\). Giả thiết trở thành \(\left(4k^2+2\right)X^2-4X+1=0\) (1), trong đó \(X\) dương.

Do \(X\) tồn tại (theo đề bài) nên có thể coi (1) là phương trình tham số \(k\), và phải có nghiệm dương.

\(\Delta'=2^2-\left(4k^2+2\right)=2-4k^2\)

Nhận xét: Nếu (1) có 2 nghiệm (tính cả nghiệm kép) thì tổng và tích của chúng đều dương nên 2 nghiệm là dương.

Vậy chỉ cần \(\Delta'\ge0\), tức là \(-\sqrt{2}\le\frac{1}{k}\le\sqrt{2}\)

Vậy min\(M=2016-\sqrt{2}\)(đẳng thức xảy ra tại \(x=-\frac{1}{\sqrt{2}},y=2\),

max\(M=2016+\sqrt{2}\) (đẳng thức xảy ra tại \(x=-\frac{1}{\sqrt{2}},y=-2\)

18 tháng 12 2016

bằng 20 đó bạn

5 tháng 7 2017

Bài 2 : 

 Ta có : \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\in R\)

\(\Rightarrow A=\frac{3}{4}+\left(x-\frac{1}{2}\right)^2\ge\frac{3}{4}\forall x\in R\)

Vậy Amin = \(\frac{3}{4}\) dấu "=" chỉ sảy ra khi x = \(\frac{1}{2}\)

6 tháng 7 2017

Cảm ơn bạn nhiều nha

Còn câu b bạn suy nghĩ được chưa

31 tháng 8 2018

Bài 3: \(A=\frac{\left(2a+b+c\right)\left(a+2b+c\right)\left(a+b+2c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

Đặt a+b=x;b+c=y;c+a=z

\(A=\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}\ge\frac{2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}}{xyz}=\frac{8xyz}{xyz}=8\)

Dấu = xảy ra khi \(a=b=c=\frac{1}{3}\)

31 tháng 8 2018

Bài 4: \(A=\frac{9x}{2-x}+\frac{2}{x}=\frac{9x-18}{2-x}+\frac{18}{2-x}+\frac{2}{x}\ge-9+\frac{\left(\sqrt{18}+\sqrt{2}\right)^2}{2-x+x}=-9+\frac{32}{2}=7\)

Dấu = xảy ra khi\(\frac{\sqrt{18}}{2-x}=\frac{\sqrt{2}}{x}\Rightarrow x=\frac{1}{2}\)

Tham khảo nhé :

Cho a b > 0 và  3a + 5b = 12,Tìm GTLN của P = ab,Cho a b c > 0 và  abc = 1,Chứng minh (a + 1)(b + 1)(c + 1) >= 8,Q = a^2 + b^2 + c^2,Toán há»c Lá»p 8,bà i tập Toán há»c Lá»p 8,giải bà i tập Toán há»c Lá»p 8,Toán há»c,Lá»p 8

28 tháng 7 2019

ê P ở đâu mà bảo người ta tham khảo?

21 tháng 12 2017

Đặt \(B=xy=2013-A\) thế vô cái cần tìm thì được

\(5x^2+\frac{y^2}{4}+\frac{1}{4x^2}=\frac{5}{2}\)

\(\Leftrightarrow x^2y^2+20x^4-10x^2+1=0\)

\(\Leftrightarrow20x^4-10x^2+1+B^2=0\)

\(\Leftrightarrow B^2=\frac{1}{4}-\left(\sqrt{20}x^2-\frac{\sqrt{5}}{2}\right)^2\le\frac{1}{4}\)

\(\Leftrightarrow-\frac{1}{2}\le B\le\frac{1}{2}\)

\(\Leftrightarrow-\frac{1}{2}\le2013-A\le\frac{1}{2}\)

\(\Leftrightarrow2012,3\le A\le2013,5\)

14 tháng 5 2019

bạn chưa ghi gtnn , gtln xảy ra khi x=? và y=?

2 tháng 12 2016

Mình gợi ý để bạn được người khác giúp nhé. Khi đăng bài bạn nên đăng từng câu. Đừng đăng nhiều câu cùng lúc vì nhìn vô không ai muốn giải hết. Giờ bạn tách ra từng câu đăng lại đi. Sẽ có người giúp đấy

1 tháng 12 2016

Các bạn ơi giúp mình với ạ, cảm ơn nhiều!