K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2022

\(A=\dfrac{4\left(x^2+2x+3-3\right)+18}{x^2+2x+3}=\dfrac{4\left(x^2+2x+3\right)+6}{x^2+2x+3}=4+\dfrac{6}{\left(x+1\right)^2+2}\)

Ta có \(\left(x+1\right)^2+2\ge2\Rightarrow\dfrac{6}{\left(x+1\right)^2+2}\le3\Leftrightarrow4+\dfrac{6}{\left(x+1\right)^2+2}\le7\)

Dấu ''='' xảy ra khi x = -1 

 

=\(\dfrac{18}{7}\)

c: \(-x^2+2x-2=-\left(x-1\right)^2-1\le-1\forall x\)

\(\Leftrightarrow V\ge-1\forall x\)

Dấu '=' xảy ra khi x=1

14 tháng 7 2016

toán 12 nha

5 tháng 2 2021

undefined

5 tháng 2 2021

Giups mik vs

lolang

21 tháng 10 2023

loading...  loading...  loading...  

22 tháng 11 2023

Bài 1:

a: \(A=x^2+2x+4\)

\(=x^2+2x+1+3\)

\(=\left(x+1\right)^2+3>=3\forall x\)

Dấu '=' xảy ra khi x+1=0

=>x=-1

Vậy: \(A_{min}=3\) khi x=-1

b: \(B=x^2-20x+101\)

\(=x^2-20x+100+1\)

\(=\left(x-10\right)^2+1>=1\forall x\)

Dấu '=' xảy ra khi x-10=0

=>x=10

Vậy: \(B_{min}=1\) khi x=10

c: \(C=x^2-2x+y^2+4y+8\)

\(=x^2-2x+1+y^2+4y+4+3\)

\(=\left(x-1\right)^2+\left(y+2\right)^2+3>=3\forall x\)

Dấu '=' xảy ra khi x-1=0 và y+2=0

=>x=1 và y=-2

Vậy: \(C_{min}=3\) khi (x,y)=(1;-2)

Bài 2:

a: \(A=5-8x-x^2\)

\(=-\left(x^2+8x\right)+5\)

\(=-\left(x^2+8x+16-16\right)+5\)

\(=-\left(x+4\right)^2+16+5=-\left(x+4\right)^2+21< =21\forall x\)

Dấu '=' xảy ra khi x+4=0

=>x=-4

b: \(B=x-x^2\)

\(=-\left(x^2-x\right)\)

\(=-\left(x^2-x+\dfrac{1}{4}-\dfrac{1}{4}\right)\)

\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}< =\dfrac{1}{4}\forall x\)

Dấu '=' xảy ra khi \(x-\dfrac{1}{2}=0\)

=>\(x=\dfrac{1}{2}\)

c: \(C=4x-x^2+3\)

\(=-x^2+4x-4+7\)

\(=-\left(x^2-4x+4\right)+7\)

\(=-\left(x-2\right)^2+7< =7\forall x\)

Dấu '=' xảy ra khi x-2=0

=>x=2

d: \(D=-x^2+6x-11\)

\(=-\left(x^2-6x+11\right)\)

\(=-\left(x^2-6x+9+2\right)\)

\(=-\left(x-3\right)^2-2< =-2\forall x\)

Dấu '=' xảy ra khi x-3=0

=>x=3

23 tháng 12 2023

a: \(-2x^2-8x+1\)

\(=-2x^2-8x-8+9\)

\(=-2\left(x^2+4x+4\right)+9\)

\(=-2\left(x+2\right)^2+9< =9\forall x\)

Dấu '=' xảy ra khi x+2=0

=>x=-2

b: \(-5x^2-y^2-4xy+4x+3\)

\(=\left(-4x^2-4xy-y^2\right)+\left(-x^2+4x-4\right)+7\)

\(=-\left(2x+y\right)^2-\left(x-2\right)^2+7< =7\forall x,y\)

Dấu '=' xảy ra khi 2x+y=0 và x-2=0

=>x=2 và y=-2x=-4

26 tháng 8 2020

A = x2 + 4x + 7

   = ( x2 + 4x + 4 ) + 3

   = ( x + 2 )2 + 3

( x + 2 )2 ≥ 0 ∀ x => ( x + 2 )2 + 3 ≥ 3

Đẳng thức xảy ra <=> x + 2 = 0 => x = -2

=> MinA = 3 <=> x = -2

B = 2x2 - 6x 

   = 2( x2 - 3x + 9/4 ) - 9/2

   = 2( x - 3/2 )2 - 9/2

2( x - 3/2 )2 ≥ 0 ∀ x => 2( x - 3/2 )2 -9/2 ≥ -9/2 

Đẳng thức xảy ra <=> x - 3/2 = 0 => x = 3/2

=> MinB = -9/2 <=> x = 3/2

C = -2x2 + 8x - 15

    = -2( x2 - 4x + 4 ) - 7

    = -2( x - 2 )2 - 7

-2( x - 2 )2 ≤ 0 ∀ x => -2( x - 2 )2 - 7 ≤ -7

Đẳng thức xảy ra <=> x - 2 = 0 => x = 2

=> MaxC = -7 <=> x = 2

6 tháng 8 2017

a,A=12

b,B=8

c,C=-3

6 tháng 8 2017
A= (x^2-4x+4)+3 A= (x-2)^2>= 3 Vậy GTNN của A=3 <=> x=2 B=x^2+8x B=(x^2+8x+16)-16 B=(x+4)^2-16>= -16 Vậy GTNN của A=-16 <=> x--4 C=-2x^2+8x-15 C=-2(x^2-4x+15/2) C=-2(x^2-4x+4)+7/2 C=-2(x-2)^2+7/2 Vậy GTNN của C= 7/2 <=> x=2