Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho c=1/3+1/32+1/33+...+1/399
Hãy so sánh c với 1/2
C=.................................
\(\Rightarrow3C=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\)
\(\Rightarrow3C-C=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\right)\)
\(\Rightarrow2C=1-\frac{1}{3^{99}}\)
\(\Rightarrow C=\frac{1-\frac{1}{3^{99}}}{2}\)
Dễ thấy \(1-\frac{1}{3^{99}}< 1\Leftrightarrow\frac{1-\frac{1}{3^{99}}}{2}< \frac{1}{2}\Leftrightarrow C< \frac{1}{2}\)
C=.................................
\(\Rightarrow3C=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\)
\(\Rightarrow3C-C=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\right)\)
\(\Rightarrow2C=1-\frac{1}{3^{99}}\)
\(\Rightarrow C=\frac{1-\frac{1}{3^{99}}}{2}\)
Dễ thấy \(1-\frac{1}{3^{99}}< 1\Leftrightarrow\frac{1-\frac{1}{3^{99}}}{2}< \frac{1}{2}\Leftrightarrow C< \frac{1}{2}\)