n mũ hai + 3n + 4 chia hết cho n+3
Tìm n
HỘ MÌNH VỚI HUHU
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 2n+7=n+n+9-2=(n+9)+(n-2)
Vì n-2 chia hết cho n-2 nên n+9 chia hết cho n-2
n+9=(n-2)+11
Vì n-2 chia hết cho n-2 nên 11 chia hết cho n-2
=>Ư(11)={1,11}
+ Nếu n-2=1 thì n=1+2=3
+ Nếu n-2=11 thì n=11+2=13
Vậy n E {3,13}
b) n2+3n+4=nxn+3n+4=n(n+3)+4
Vì n(n+3) chia hết cho n+3 nên 4 chia hết cho n+3
=>Ư(4)={1,2,4}
+Nếu n+3=1 thì n=1-3(không xảy ra vì n E N)
+Nếu n+3=2 thì n=2-3(không xảy ra vì n E N)
+Nếu n+3=4 thì n=4-3=1
Vậy n=1
n ^ 2 + 3n + 4 chia het n + 3
nn + 3n + 4 chia het n + 3
(n + 3). n + 4 chia het n + 3
Vi (n + 3). n chia het n + 3 (vi co thua so n + 3 trong h (n+3). n )
=> 4 chia het cho n + 3
=> 1 chia het cho n
=> n = 1; -1
Chúng ta chỉ cần vẽ hình ngôi sao
Như thế đấy(mình vẽ hơi xấu)
a) Ta có:
\(n^2+3n+2\)
\(=n^2+n+2n+2\)
\(=n\left(n+1\right)+2\left(n+1\right)\)
\(=\left(n+1\right)\left(n+2\right)\)
Vì \(n+1⋮n+1\)
\(\Rightarrow n+2⋮n+1\)
Ta có:
\(n+2=n+1+1\)
Vì \(n+1⋮n+1\)
\(\Rightarrow1⋮n+1\)
\(\Rightarrow n+1\inƯ\left(1\right)\)
\(\RightarrowƯ\left(1\right)\in\left\{-1;1\right\}\)
\(\Rightarrow\hept{\begin{cases}n+1=-1\\n+1=1\end{cases}\Rightarrow\hept{\begin{cases}n=-2\left(l\right)\\n=0\left(tm\right)\end{cases}}}\)
Vậy \(n=0\)
a) Ta có: \(3n+24⋮n-4\)
\(\Leftrightarrow3n-12+36⋮n-4\)
mà \(3n-12⋮n-4\)
nên \(36⋮n-4\)
\(\Leftrightarrow n-4\inƯ\left(36\right)\)
\(\Leftrightarrow n-4\in\left\{1;-1;2;-2;3;-3;4;-4;6;-6;9;-9;12;-12;18;-18;36;-36\right\}\)
hay \(n\in\left\{5;3;6;2;7;1;8;0;10;-2;13;-5;16;-8;22;-14;40;-32\right\}\)
Vậy: \(n\in\left\{5;3;6;2;7;1;8;0;10;-2;13;-5;16;-8;22;-14;40;-32\right\}\)
n2+3n+4=nx(n+3)+4
Vì nx(n+3) chia hết cho n+3 nên 4 chia hết cho n+3
=>Ư(4)={1,2,4}
+Nếu n+3=1 thì n=1-3(loại vì n E N)
+Nếu n+3=2 thì n=2-3(loại vì n E N)
+Nếu n+3=4 thì n=4-3=1
Vậy n=1
a) n+3=n-2+5 Để n+3 chia hết chp n-2 thì 5 chia hết cho n-2 => n-2 thuộc ước của 5 => n-2 thuộc { -5;-1:1;5}
=> n= tự tìm