lx+2l-4=3x+8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) |2x - 6| + |x + 2| = 8
1)Với \(x< -2\) ta được: -(2x - 6) + [-(x + 2)] = 8 => -2x + 6 - x - 2 = 8 => -3x = 8 + 2 -6 = 4 => x = \(\frac{-4}{3}\)(loại vì \(\frac{-4}{3}>-2\))
2)Với \(-2\le x< 3\)ta được: (2x - 6) + [-(x + 2)] => 2x - 6 - x - 2 = 8 => x = 8 + 6 +2 => x = 16 (loại vì 16 > 3)
3)Với \(x\ge3\) ta được: (2x - 6) + (x + 2) = 8 => 2x - 6 + x + 2 = 8 => 3x = 8 + 6 - 2 = 12 => x = 4(chọn)
Vậy x = 4
c) |2x - 1| + |2x - 5| = 4
1)Với \(x\le0,5\)ta được: -(2x - 1) + [-(2x - 5)] = 4 => -2x + 1 - 2x + 5 = 4 => -4x = 4 - 1 - 5 => -4x = -2 => x = \(0,5\)(loại)
2)Với \(0,5< x< 2,5\) ta được: 2x - 1 + [-(2x - 5)] = 4 => 2x -1 - 2x + 5 = 4 => 0x = 4 +1 -5 => 0x = 0 => x\(\in R\)
3)Với \(x\ge2,5\)ta được: 2x - 1 + 2x - 5 = 4 => 4x = 4 + 1 + 5 => 4x = 10 => x = \(2,5\) (chọn)
Vậy x = 0,5 hoặc x = 2,5
d) |x + 5| + |x + 3| = 9
1)Với \(x< -5\)ta được: -(x + 5) + [-(x + 3)] = 9 => -x - 5 - x - 3 = 9 => -2x = 9 + 5 + 3 => -2x = 17 => x = -8,5(chọn)
2)Với \(-5\le x< -3\) ta được: x + 5 + [-(x + 3)] = 9 => x + 5 -x - 3 = 9 => 0x = 9 - 5 + 3 => 0x = 7(vô lý)
3)Với \(x\le-3\)ta được: x + 5 + x + 3 = 9 => 2x = 9 - 5 - 3 => 2x = 1 => x = 0,5(chọn)
Vậy x = -8,5 hoặc x = 0,5
a) 7x - |2x - 4| = 3x + 12 => 7x - (2x - 4) = 3x + 12 khi (2x + 4)\(\ge\)0 => x\(\ge\)-0,5 hoặc 7x - [-(2x - 4)] = 3x + 12 khi (2x + 4) < 0 => x < -0,5
1)Với x \(\ge\)-0,5 thì 7x - (2x - 4) = 3x +12 => 7x - 2x + 4 = 3x + 12 => 7x -2x -3x = -4 +12 => 2x = 8 => x = 4(chọn vì 4 > -0,5)
2)Với x < -0,5 thì 7x - [-(2x - 4)] = 3x +12 => 7x + 2x - 4 = 3x + 12 => 7x +2x - 3x = 4 + 12 => 6x = 16 => x = \(\frac{8}{3}\)(loại vì \(\frac{8}{3}\)> -0,5 )
Vậy x = 4
Ta có : |x + 2| +|x + 4| - 3x = 0
=> |x + 2| +|x + 4| = 3x (1)
Lập bảng xét dấu :
Nếu x < - 4
=> |x + 2| = -(x + 2) = -x - 2
|x + 4| = -(x + 4) = - x - 4
Khi đó (1) <=> -x - 2 - x - 4 = 3x
=> x = - 1,2 (loại)
Nếu \(-4\le x\le-2\)
=> |x + 2| = -(x + 2) = -x - 2
|x + 4| = x + 4
Khi đó (1) <=> - x - 2 + x + 4 = 3x
=> x = 2/3 (loại)
Nếu x > - 2
=> |x + 2| = x + 2
|x + 4| = x + 4
Khi đó (1) <=> x + 2 + x + 4 = 3x
=> x = 6 (tm)
Vậy x = 6
a: TH1: x<-1
Pt sẽ là 3(2-x)-(-x-1)=x+5
=>6-3x+x+1=x+5
=>-3x+7=5
=>-3x=-2
=>x=2/3(loại)
TH2: -1<=x<2
Pt sẽ là 3(2-x)-x-1=x+5
=>6-3x-x-1=x+5
=>-4x+5=x+5
=>x=0(nhận)
TH3: x>=2
Pt sẽ là 3x-6-x-1=x+5
=>2x-7=x+5
=>x=12(nhận)
b: TH1: x<-2
Pt sẽ là 2-x-x-2=4-y^2
=>-2x=4-y^2
=>2x=y^2-4
=>2x-y^2=-4
TH2: -2<=x<2
Pt sẽ là 2-x+x+2=4-y^2
=>-y^2=0
=>y=0
TH3: x>=2
Pt sẽ là x-2+x+2=4-y^2
=>2x+y^2=4
|x+2|−4=3x+8|x+2|−4=3x+8
⇔|x+2|=3x+12⇔|x+2|=3x+12
⇔[x+2=3x+12 khi x+2>=0 <=> x>-2−x+−2=3x+12x+2 <0 <=> x<-2⇔[x+2=3x+12−x+−2=3x+12
⇔[x−3x=12−2−x−3x=12−(−2)⇔[x−3x=12−2−x−3x=12−(−2)
⇔[−2x=10−4x=14⇔[−2x=10−4x=14
⇔⎡⎣x=−5(loại)x=−72(loại)
\(\left|x+2\right|-4=3x+8\)
\(\Leftrightarrow\left|x+2\right|=3x+12\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=3x+12\\-x+-2=3x+12\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3x=12-2\\-x-3x=12-\left(-2\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-2x=10\\-4x=14\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=-\dfrac{7}{2}\end{matrix}\right.\)